ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 195-207

Estimating the spectral reflectance and possibility of recognizing natural landscapes in forest-steppe zone using Sentinel-2 data

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 13.11.2023
DOI: 10.21046/2070-7401-2023-20-6-195-207
Quantitative analysis of natural landscape spectral reflectance is necessary for development of approaches to their recognition and assessment using remote sensing data. The article analyzes the reflectance of landscapes typical of forest-steppe natural zone and the south of the Central Russian Upland using Sentinel-2 data: small-dry-valleys with different forest cover, floodplain areas, oak forests of different ages. Sentinel-2 bands can be divided into 2 groups according to reflectance of the most typical landscape components in the region. Treeless areas of landscapes, areas of small-dry-valleys with different forest cover, areas of floodplains and broad-leaved forests of various ages are characterized by the highest, statistically significant differences in the blue, red and short-wave infrared ranges. Possibilities of landscapes automated recognition were investigated using stepwise discriminant analysis of Sentinel-2 spectral reflectance. It has been established that the spectral reflectance in short-wave infrared ranges make the greatest contribution to the recognition of landscape components in the region. Classification functions have been calculated and verified, allowing automated recognition of forest-steppe landscape components with a total accuracy of up to 85.6%.
Keywords: forest-steppe landscapes, Central Russian Upland, spectral reflectance, discriminant analysis, Sentinel-2
Full text

References:

  1. Bazilevich N.I. Biologicheskaya produktivnost' ekosistem Severnoi Evrazii (Biological productivity of ecosystems in Northern Eurasia), Moscow: Nauka, 1993, 293 p. (in Russian).
  2. Buryak Zh.A. Terekhin E.A. Geoinformation modeling of spatio-temporal variability of agroclimatic conditions, Regional'nye geosistemy, 2020, Vol. 44, No. 3, pp. 333-342.
  3. Degtyar' A.V., Grigor'eva O.I., Tatarintsev R.Yu. Ekologiya Belogor'ya v tsifrakh (Ecology of belogorie in figures). Belgorod: Konstanta, 2016. 122 p. (in Russian).
  4. Koroleva N.V., Tikhonova E.V., Ershov D.V., Saltykov A.N., Gavrilyuk E.A., Pugachevskii A.V., Twenty-five years of reforestation on nonforest lands in Smolenskoe Poozerye national park according to landsat imagery assessment, Contemporary Problems of Ecology, 2018, Vol. 11, No. 7, pp. 719–728. DOI: 10.1134/S1995425518070077.
  5. Lipka O.N., Korzukhin M.D., Zamolodchikov D.G., Dobrolyubov N.Yu., Krylenko S.V., Bogdanovich A.Yu., Semenov S.M. A role of forests in natural systems adaptation to climate change, Lesovedenie, 2021, No. 5, pp. 531–546 (in Russian), DOI: 10.31857/S0024114821050077
  6. Ol'chev A.V., Rozinkina I.A., Kuz'mina E.V., Nikitin M.A., Rivin G.S. Assessing the influence of forest cover changes on summer weather conditions in the central part of the East-European plain, Fundamental'naya i prikladnaya klimatologiya, 2017, Vol. 4, pp. 83–105 (in Russian), DOI: 10.21513/2410-8758-2017-4-83-105.
  7. Ryzhova I.M., Erokhova A.A., Podvezennaya M.A. Alterations of the carbon storages in postagrogenic ecosystems due to natural reforestation in Kostroma oblast, Lesovedenie, 2015, No. 4, pp.307–317 (in Russian).
  8. Terekhin E.A., Chendev Yu.G. Satellite-Derived Spatiotemporal Variations of Forest Cover in Southern Forest–Steppe, Central Russian Upland, Contemporary Problems of Ecology, 2019, Vol. 12, No. 7, pp.780–786, DOI: 10.1134/S1995425519070102.
  9. Terekhin E.A. Spatio-temporal assessment of forest cover of small-dry-valleys in the Central Russian forest-steppe using spectral response, Issledovanie Zemli iz kosmosa, 2021, No. 4, pp. 84–96 (in Russian), DOI: 10.21513/2410-8758-2017-4-83-105.
  10. Shinkarenko S.S., Bartalev S.A. Analysis of the influence of species composition, projective cover, and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 176–192 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-176-192.
  11. Bonan G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 2008, Vol. 320, No. 5882, pp. 1444–1449, DOI: 10.1126/science.1155121.
  12. Emmert L., Negrón-Juárez R.I., Chambers J.Q., Santos J. dos, Lima A.J.N., Trumbore S., Marra D.M. Sensitivity of optical satellites to estimate windthrow tree-mortality in a Central Amazon forest, Remote Sensing, 2023, Vol. 15, No. 16, Article 4027, DOI: 10.3390/rs15164027.
  13. Ershov D.V., Gavrilyuk E.A., Koroleva N.V., Belova E.I., Tikhonova E.V., Shopina O.V., Titovets A.V., Tikhonov G.N. Natural afforestation on abandoned agricultural lands during post-soviet period: a comparative Landsat data analysis of bordering regions in Russia and Belarus, Remote Sensing, 2022, Vol. 14, No. 2, Article 322, DOI: 10.3390/rs14020322.
  14. Fan C., Myint S.W., Rey S.J., Li W. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: evidence from the Phoenix metropolitan region, International Journal of Applied Earth Observation and Geoinformation, 2017, Vol. 58, pp. 12–25, DOI: 10.1016/j.jag.2017.01.009.
  15. Feng M., Sexton J.O., Huang C., Anand A., Channan S., Song X.-P., Song D.-X., Kim D.-H., Noojipady P., Townshend J.R. Earth science data records of global forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs, Remote Sensing of Environment, 2016, Vol. 184, pp. 73–85, DOI: 10.1016/j.rse.2016.06.012.
  16. Kim D.-H., Sexton J.O., Noojipady P., Huang C., Anand A., Channan S., Feng M., Townshend J.R. Global, Landsat-based forest-cover change from 1990 to 2000, Remote Sensing of Environment, 2014, Vol. 155, pp. 178–193, DOI: 10.1016/j.rse.2014.08.017.
  17. Lisetskii F.N., Buryak Z.A. Runoff of water and its quality under the combined impact of agricultural activities and urban development in a small river basin, Water, 2023, Vol. 13, No. 15, Article 2443, DOI: 10.3390/w15132443.
  18. Lisetskii F.N., Buryak Z.A., Marinina O.A., Ukrainskiy P.A., Goleusov P.V. Features of soil organic carbon transformations in the southern area of the East European Plain // Geosciences, 2023, Vol. 13, No. 9, Article 278, DOI: 10.3390/geosciences13090278.
  19. Meng Y., Liu X., Wu L., Liu M., Zhang B., Zhao S. Spatio-temporal variation indicators for landscape structure dynamics monitoring using dense normalized difference vegetation index time series, Ecological Indicators, 2019, Vol. 107, Article 105607, DOI: 10.1016/j.ecolind.2019.105607.
  20. Mulverhill C., Coops N.C., Achim A. Continuous monitoring and sub-annual change detection in high-latitude forests using Harmonized Landsat Sentinel-2 data, ISPRS Journal of Photogrammetry and Remote Sensing, 2023, Vol. 197, pp. 309–319, DOI: 10.1016/j.isprsjprs.2023.02.002.
  21. Potapov P.V., Turubanova S.A., Tyukavina A., Krylov A.M., McCarty J.L., Radeloff V.C., Hansen M.C. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote Sensing of Environment, 2015, Vol. 159, pp. 28–43, DOI: 10.1016/j.rse.2014.11.027.
  22. Uniyal S., Purohit S., Chaurasia K., Rao S.S., Amminedu E. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India, Urban Forestry & Urban Greening, 2022, Vol. 67, Article 127445, DOI: 10.1016/j.ufug.2021.127445.
  23. White J.C., Wulder M.A., Hermosilla T., Coops N.C., Hobart G.W. A nationwide annual characterization of 25years of forest disturbance and recovery for Canada using Landsat time series, Remote Sensing of Environment, 2017, Vol. 194, pp. 303–321, DOI: 10.1016/j.rse.2017.03.035.
  24. Yang X., Qiu S., Zhu Z., Rittenhouse C., Riordan D., Cullerton M. Mapping understory plant communities in deciduous forests from Sentinel-2 time series, Remote Sensing of Environment, 2023, Vol. 293, Article 113601, DOI: 10.1016/j.rse.2023.113601.
  25. Zhang J., Pham T.-T.-H., Kalacska M., Turner S. Using Landsat Thematic Mapper records to map land cover change and the impacts of reforestation programmes in the borderlands of southeast Yunnan, China: 1990–2010, International Journal of Applied Earth Observation and Geoinformation, 2014, Vol. 31, pp. 25–36, DOI: 10.1016/j.jag.2014.01.006.
  26. Zhao F., Huang C., Goward S.N., Schleeweis K., Rishmawi K., Lindsey M.A., Denning E., Keddell L., Cohen W.B., Yang Z., Dungan J.L., Michaelis A.Development of Landsat-based annual US forest disturbance history maps (1986–2010) in support of the North American Carbon Program (NACP), Remote Sensing of Environment, 2018. Vol. 209, pp. 312–326, DOI: 10.1016/j.rse.2018.02.035.