ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 67-79

Specialized dataset of multispectral aerophotos for solving precision farming problems using artificial intelligence methods

O.A. Mitrofanova 1 , E.P. Mitrofanov 1 , I.S. Blekanov 2 , A.E. Molin 2 
1 Agrophysical Research Institute, Saint Petersburg, Россия
2 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 06.10.2023
DOI: 10.21046/2070-7401-2023-20-6-67-79
Due to fast evolution of information technology, the task of creating large quality remote sensing datasets is becoming increasingly important. At the Agrophysical Research Institute (AFI), artificial intelligence methods and image analysis have been used for about 20 years. During this period, a large amount of information has been collected to solve the problems of precision farming. The object of the presented study is an experimental AFI bio-polygon, located in Leningrad Region, which consists of 29 fields. For collection, an unmanned aerial vehicle developed by the AFI, as well as an unmanned aerial system Geoscan-401, was used. The shooting was carried out in five spectra: red, green, blue, infrared and red edge, the average flight height was 80 meters, the spatial resolution of the images was 1–10 cm/pixel. The paper considers in detail the generated algorithms of data collection and preprocessing. In the study, as a demonstration of the applicability of the created marked-up dataset, an experiment was conducted to analyze the orthophotomap of one of the fields of the biopolygon for the period 2019–2021, compiled from images of the Micasense RedEdge MX multispectral camera. The method of the classical Random Forest machine learning algorithm adapted to the task and the deep learning method based on the U-Net architecture were used as image analysis methods. The results of the experiment demonstrated the advantage of the deep learning method in solving the problem of determining the nitrogen regime of crops for differentiated fertilization.
Keywords: dataset, image analysis, multispectral aerial photography, precision farming, machine learning, deep learning
Full text

References:

  1. Blekanov I. S., Molin A. E., Razumilov E. S., Ershov E. A., Monitoring of nitrogen nutrition of grain crops based on neural network technologies, Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel’skom khozyaistve (Application of Earth Remote Sensing Means in Agriculture), Proc. 3rd All-Russia Science Conf. with Intern. Participation, Saint Petersburg: FGBNU AFI, 2021, pp. 141–145 (in Russian).
  2. Blokhin Yu. I., Belov A. V., Blokhina S. Yu., Integrated system for control of soil moisture and local weather conditions for remote sensing data interpretation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87–95 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-87-95.
  3. Blokhin Yu. I., Yakushev V. V., Blokhina S. Yu. et al., New solutions for the reference data formation to improve the accuracy of the agrophysical soil properties determination from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 164–178 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-164-178.
  4. Shpanev A. M., Effect of mineral fertilizers on the spatial distribution of weeds in spring barley crops, Plodorodie, 2022, No. 2, pp. 8–12 (in Russian), DOI: 10.25680/S19948603.2022.125.02.
  5. Yakushev V. P., Bure V. M., Mitrofanova O. A. et al., Within-field variability estimation based on variogram analysis of satellite data for precision agriculture, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 114–122 (in Russian), DOI: 10.21046/2070-7401-2020-17-2-114-122.
  6. Belcore E., Angeli S., Colucci E. et al., Precision agriculture workflow, from data collection to data management using FOSS tools: An application in Northern Italy vineyard, Intern. J. Geo-Information, 2021, Vol. 10, No. 4, Article 236, DOI: 10.3390/ijgi10040236.
  7. Blekanov I., Molin A., Zhang D. et al., Monitoring of grain crops nitrogen status from UAV multispectral images coupled with deep learning approaches, Computers and Electronics in Agriculture, 2023, Vol. 212, Article 108047, DOI: 10.1016/j.compag.2023.108047.
  8. Bosilj P., Aptoula E., Duckett T., Cielniak G., Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture, J. Field Robotics, 2020, Vol. 37, pp. 7–19, DOI: 10.1002/rob.21869.
  9. Breiman L., Random Forests, Machine Learning, 2001, Vol. 45, pp. 5–32, DOI: 10.1023/A:1010933404324.
  10. Chebrolu N., Lottes P., Schaefer A. et al., Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields, Intern. J. Robotics Research, 2017, Vol. 36, No. 10, pp. 1045–1052, DOI: 10.1177/0278364917720510.
  11. Chiu M. T., Xu X., Wei Y., Huang Z., Schwing A., Brunner R., Khachatrian H., Karapetyan H., Dozier I., Rose G., Wilson D., Tudor A., Hovakimyan N., Huang T. S., Shi H., Agriculture-vision: A large aerial image database for agricultural pattern analysis, arXiv:2001.01306 [cs.CV], 2020.
  12. Haug S., Ostermann J., A Crop/Weed Field Image dataset for the evaluation of computer vision based precision agriculture tasks, ECCV 2014: Computer Vision — ECCV 2014 Workshops, Lecture Notes in Computer Science, 2014, Vol. 8928, pp. 105–116, DOI: 10.1007/978-3-319-16220-1_8.
  13. Jiang Y., Li C., Paterson A. H., Robertson J. S., DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field, Plant Methods, 2019, Vol. 15, Article 141, DOI: 10.1186/s13007-019-0528-3.
  14. Jung J., Maeda M., Chang A. et al., The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems, Current Opinion in Biotechnology, 2021, Vol. 70, pp. 15–22, DOI: 10.1016/j.copbio.2020.09.003.
  15. Kallimani C., Dehkordi R. H., van Evert F. K. et al., UAV-based Multispectral and Thermal dataset for exploring the diurnal variability, radiometric and geometric accuracy for precision agriculture, Open Data J. Agricultural Research, 2020, Vol. 6, 7 p., DOI: 10.18174/odjar.v6i0.16317.
  16. Kumar A., Taparia M., Rajalakshmi P. et al., UAV based remote sensing for tassel detection and growth stage estimation of maize crop using multispectral images, IGARSS 2020 — 2020 IEEE Intern. Geoscience and Remote Sensing Symp., 2020, pp. 1588–1591, DOI: 10.1109/IGARSS39084.2020.9323266.
  17. Lu J., Tan L., Jiang H., Review on convolutional neural network (CNN) applied to plant leaf disease classification, Agriculture, 2021, Vol. 11, Article 707, DOI: 10.3390/agriculture11080707.
  18. Madsen S. L., Mathiassen S. K., Dyrmann M. et al., Open plant phenotype database of common weeds in Denmark, Remote Sensing, 2020, Vol. 12, No. 8, DOI: 10.3390/RS12081246.
  19. Matvejenko D., Komarov A., Lekomtsev P., Nugis E., Optimization of options for differential application of nitrogen fertilizers in the precision farming system, Agraarteadus: J. Agricultural Science, 2020, Vol. 31, No. 1, pp. 41–46, DOI: 10.15159/jas.20.06.
  20. Mortensen A. K., Skovsen S., Karstoft H., Gislum R., The Oil Radish Growth dataset for semantic segmentation and yield estimation, 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshop, Long Beach, California, US, 2019, 8 p., DOI: 10.1109/CVPRW.2019.00328.
  21. Olsen A., Konovalov D. A., Philippa B. et al., DeepWeeds: A multiclass weed species image dataset for deep learning, Scientific Reports, 2019, Vol. 9, No. 1, Article 2058, DOI: 10.1038/s41598-018-38343-3.
  22. Pereira P. C. J., Monteiro A., von Wangenheim A., Weed Mapping on Aerial Images — A Systematic Literature Review: Technical Report INCoD/LAPIX.01.2019.E, Federal University of Santa Catarina, 2019, DOI: 10.13140/RG.2.2.34979.71204.
  23. Ronneberger O., Fischer P., Brox T., U-Net: convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Lecture Notes in Computer Science, 2015, Vol. 9351, DOI: 10.1007/978-3-319-24574-4_28.
  24. Sa I., Chen Z., Popovic M. et al., weedNet: Dense semantic weed classification using multispectral images and MAV for smart farming, IEEE Robotics and Automation Letters, 2017, Vol. 3, No. 1, pp. 588–595, DOI: 10.1109/LRA.2017.2774979.
  25. Sa I., Popovic M., Khanna R. et al., WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming, Remote Sensing, 2018, Vol. 10, No. 9, Article 1423, DOI: 10.3390/rs10091423.
  26. Sinde-Gonzalez I., Gil-Docampo M., Arza-Garcia M. et al., Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys, International J. Applied Earth Observations and Geoinformation, 2021, Vol. 101, Article 102355, DOI: 10.1016/j.jag.2021.102355.
  27. Song Z., Zhang Z., Yang S. et al., Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging, Computers and Electronics in Agriculture, 2020, Vol. 179, Article 105812, DOI: 10.1016/j.compag.2020.105812.
  28. The future of food and agriculture — Trends and challenges, Food and Agriculture Organization of the United Nations, Rome: FAO, 2017, 163 p.
  29. Tsouros D. C., Bibi S., Sarigiannidis P. G., A review on UAV-based applications for precision agriculture, Information, 2019, Vol. 10, No. 11, Article 349, DOI: 10.3390/info10110349.
  30. Weiss M., Jacob F., Duveiller G., Remote sensing for agricultural applications: A meta-review, Remote Sensing of Environment, 2020, Vol. 236, Article 111402, DOI: 10.1016/j.rse.2019.111402.
  31. Wheeler T., Von Braun J., Climate change impacts on global food security, Science, 2013, Vol. 341, No. 6145, pp. 508–513, DOI: 10.1126/science.1239402.
  32. Wiesner-Hanks T., Stewart E. L., Kaczmar N. et al., Image set for deep learning: field images of maize annotated with disease symptoms, BMC Research Notes, 2018, Vol. 11, Article 440, DOI: 10.1186/s13104-018-3548-6.
  33. Yang M. D., Tseng H. H., Hsu Y. C. et al., A UAV open dataset of rice paddies for deep learning practice, Remote sensing, 2021, Vol. 13, Article 1358, DOI: 10.3390/rs13071358.
  34. Ye H., Huang W., Huang S. et al., Recognition of banana fusarium wilt based on UAV remote sensing, Remote Sensing, 2020, Vol. 12, No. 6, Article 938, DOI: 10.3390/rs12060938.
  35. Zhang C., Kovacs J. M., The application of small unmanned aerial systems for precision agriculture: a review, Precision Agriculture, 2012, Vol. 13, pp. 693–712, DOI: 10.1007/s11119-012-9274-5.
  36. Zheng H., Zhou X., He J. et al., Early season detection of rice plants using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV), Computers and Electronics in Agriculture, 2020, Vol. 169, Article 105223, DOI: 10.1016/j.compag.2020.105223.
  37. Zhong Y., Hu X., Luo C. et al., WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF, Remote Sensing of Environment, 2020, Vol. 250, Article 112012, DOI: 10.1016/j.rse.2020.112012.