ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 289-302

Dynamics of chlorophyll a concentration in Lake Onego according to satellite observations in 1998-2022.

V.N. Baklagin 1 , I.S. Novikova 1 
1 Northern Water Problem Institute of Karelian Research Center RAS, Petrozavodsk, Russia
Accepted: 01.12.2023
DOI: 10.21046/2070-7401-2023-20-6-289-302
The work is devoted to assessing the long-term variability of chlorophyll a concentration in the surface waters of Lake Onego based on satellite data for 1998–2022. Satellite data sets provided by the GlobColour product of the Copernicus marine environmental monitoring service and the Ocean Color Climate Change Initiative product of the European Space Agency were used. The average seasonal values of chlorophyll a concentration for six months (May, June, July, August, September, and October) were calculated for the entire area of Lake Onego, which is conditioned by the period of active development of phytoplankton in the lake during the growing season. Averaged spatial distributions of chlorophyll a concentration were formed based on average statistical data on chlorophyll a concentration for the specified period. A comparison was made of the results of processing of the satellite data on chlorophyll a concentration with field/ship data obtained during expeditionary research by the Laboratory of Hydrobiology of the Northern Water Problems Institute of Karelian Scientific Center RAS and published in scientific periodicals. The regression analysis of time series of seasonal values of chlorophyll a concentration showed that the long-term variability of average seasonal concentration of chlorophyll a in surface waters of Lake Onego does not reveal a statistically significant trend in 1998–2022.
Keywords: Lake Onego, remote sensing according to satellite ocean color sensors, long-term time series of spatial dynamics of chlorophyll a concentration
Full text

References:

  1. Bioresursy Onezhskogo ozera (Bioresources of Lake Onego), Lukin A. A., Kukharev V. I. (eds.), Petrozavodsk: KRC RAN, 2008, 272 p. (in Russian).
  2. Diagnoz i prognoz termogidrodinamiki i ekosistem velikikh ozer Rossii (Diagnosis and forecast of thermohydrodynamics and ecosystems of the Great Lakes of Russia), Filatov N. N. (ed.), Petrozavodsk: KRC RAN, 2020, 255 p. (in Russian).
  3. Kalinkina N., Sidorova A., Polyakova T. et al., Decline in the deepwater benthic communities abundance in the Onego Lake under multifactor influence, Principles of the Ecology, 2016, No. 2, pp. 43‒61 (in Russian), DOI: 10.15393/j1.art.2016.5182.
  4. Kalinkina N. M., Tekanova E. V., Syarki M. T., Ecosystem of Lake Onego: unusual aquatic communities on anthropogenic factors and climate change, Water sector of Russia: problems, technologies, management, 2017, No. 1, pp. 4–18 (in Russian), DOI: 10.35567/1999-4508-2017-1-1.
  5. Kalinkina N. M., Tekanova E. V., Efremova T. V. et al., Response of Lake Onego ecosystem in the spring–summer period to anomaly high air temperature in winter 2019/2020, Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 2021, Vol. 85, No. 6, pp. 888–899 (in Russian), DOI: 10.31857/S2587556621060078.
  6. Kitaev S. P., Osnovy limnologii dlya gidrobiologov i ikhtiologov (Fundamentals of limnology for hydrobiologists and ichthyologists), Petrozavodsk: KSC RAN, 2007, 395 p. (in Russian).
  7. Korosov A. V., Kalinkina N. M., Tekanova E. V. et al., Development of trophic indices for lake Onego using of the ecological information system, InteRKarto. InteRGIS. Geoinformatsionnoe obespechenie ustoichivogo razvitiya territorii (InterCarto. InterGIS. GI support of sustainable development of territories), Proc. Intern. Conf., Moscow: MSU, Faculty of Geography, 2021, Vol. 27, Pt. 3, pp. 256–273 (in Russian), DOI: 10.35595/2414-9179-2021-3-27-256-273.
  8. Krupneishie ozera-vodokhranilishcha Severo-Zapada evropeiskoi territorii Rossii: sovremennoe sostoyanie i izmeneniya ekosistem pri klimaticheskikh i antropogennykh vozdeistviyakh (The Largest Lakes and reservoirs in the North-West of European Russia: current state and changes in ecosystems under climatic and anthropogenic influences), Filatov N. N., Kalinkina N. M., Kulikova T. P., Litvinenko A. V., Lozovik P. A. (eds.), Petrozavodsk: KSC RAN, 2015, 375 p. (in Russian).
  9. Onezhskoe ozero: Atlas (Lake Onego: Atlas), Filatov N. N. (ed.), Petrozavodsk: KSC RAN, 2010, 151 p. (in Russian).
  10. Pozdnyakov D. V., Filatov N. N., Interannual water quality variations in lake Ladoga in spring during 2016 and 2017: satellite observations, Fundamental and Applied Hydrophysics, 2021, Vol. 14, No. 1, pp. 79–85 (in Russian), DOI: 10.7868/S2073667321010081.
  11. Sabylina A. V., Lozovik P. A., Zobkov M. B., Water chemistry in Onego lake and its tributaries, Water Resources, 2010, Vol. 37, No. 6, pp. 842–853, DOI: 10.1134/S0097807810060102.
  12. Sabylina A. V., Tekanova E. V., Kalinkina N. M., Khlorofill “a” v vode Onezhskogo ozera (Chlorophyll-a base in the water of Lake Onego), Certificate of state registration of data base No. 2018621068 (RU), Reg. 06.13.2018.
  13. Tekanova E. V., Timakova T. M., Primary production and destruction of organic matter in Lake Onego, Sostoyanie i problemy produktsionnoi gidrobiologii, Moscow: KMK, 2006, pp. 60–70 (in Russian).
  14. Tekanova E. V., Kalinkina N. M., Zdorovennov R. E., Makarova E. M., Results of the study of Lake Onego ecosystem in the period of summer stratification based on measured data from a 2017 expedition, Trans. Karelian Research Centre of the Russian Academy of Sciences, 2018, No. 9, pp. 44–53 (in Russian), DOI: 10.17076/lim753.
  15. Timakova T. M., Kulikova T. P., Litvinova I. A. et al., Changes in biocenoses of Kondopoga Bay, Lake Onego, under the effect of effluents from a pulp and paper mill, Water Resources, 2014, Vol. 41, No. 1, pp. 78–86, DOI: 10.1134/S0097807814010126.
  16. Filatov N. N., Georgiev A. P., Efremova T. V. et al., Response of lakes in Eastern Fennoscandia and Eastern Antarctica to climate changes, Doklady Earth Sciences, 2012, Vol. 444, No. 2, pp. 1–4 (in Russian), DOI: 10.1134/S1028334X1206013X.
  17. Filatov N. N., Rukhovets L. A., Nazarova L. E., Baklagin V. A., Georgiev A. P., Efremova T. V., Palshin N. I., Tolstikov A. V., Sharov A. N., Climate change of the lake ecosystem, Vestnik RFFI, 2013, Vol. 78, No. 2, pp. 43–50 (in Russian).
  18. Filatov N. N., Rukhovets L. A., Nazarova L. E. et al., The features of the climate change impact to the ecosystems of lakes located in a fairly strong anthropogenic influence on the example of the lakes of the North European part of Russia, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2014, No. 34, pp. 48–55 (in Russian), DOI: 10.6084/M9.FIGSHARE.5821461.V2.
  19. Beckers J. M., Rixen M., EOF calculations and data filling from incomplete oceanographic datasets, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, pp. 1839–1856, DOI: 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2.
  20. Clark J., Schaeffer B. A., Darling J. et al., Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources, Ecological Indicators, 2017, Vol. 80, pp. 84–95, DOI: 10.1016/j.ecolind.2017.04.046.
  21. Coffer M., Schaeffer B. A., Darling J., Urquhart E., Salls W., Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing, Ecological Indicators, 2020, Vol. 111, Article 105976, DOI: 10.1016/j.ecolind.2019.
  22. Dekker A. G., Malthus T. J., Hoogenboom H. J., The remote sensing of inland water quality, Advances in Environmental Remote Sensing, Chichester, United Kingdom: John Wileyand Sons, 1995, pp. 123–142.
  23. Garnesson P., Mangin A., Fanton d’Andon O., Demaria J., Bretagnon M., The CMEMS GlobColour chlorophyll a product based on satellite observation: Multi-sensor merging and flagging strategies, Ocean Science, 2019, Vol. 15, No. 3, pp. 819–830, DOI: doi.org/10.5194/os-15-819-2019.
  24. Gons H. J., Auer M. T., Effler S. W., MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes, Remote Sensing of Environment, 2008, Vol. 112, No. 11, pp. 4098–4106, DOI: 10.1016/j.rse.2007.06.029.
  25. Jackson T., Sathyendranath S., Mélin F., An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications, Remote Sensing of Environment, 2017, Vol. 203, pp. 152–161, DOI: 10.1016/j.rse.2017.03.036.
  26. Isaev A., Vladimirova O., Eremina T., Ryabchenko V., Savchuk O., Accounting for Dissolved Organic Nutrients in an SPBEM-2 Model: Validation and Verification, Water, 2020, Vol. 12, Article 1307, DOI: 10.3390/w12051307.
  27. Kondratyev K. Y., Filatov N. N., Limnology and remote sensing: a contemporary approach, London, United Kingdom: Praxis Publishing Ltd, 1999, 406 p.
  28. Korosov A. A., Pozdnyakov D. V., Pettersson L. H., Grassl H., Satellite-data-based study of seasonal and spatial variations of water temperature and water quality parameters in Lake Ladoga, J. Applied Remote Sensing, 2007, Vol. 1, No. 1, Article 011508, DOI: 10.1117/1.2834770.4.
  29. Lesht B. M., Barbiero R. P., Warren G. J., Using satellite observations to assess the spatial representativeness of the GLNPO water quality monitoring program, J. Great Lakes Research, 2018, Vol. 44, No. 4, pp. 547–562, DOI: 10.1016/j.jglr.2018.05.001.
  30. Moore T. S., Campbell J. W., Dowell M. D., A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product, Remote Sensing of Environment, 2009, Vol. 113, No. 11, pp. 2424–2430, DOI: 10.1016/j.rse.2009.07.016.
  31. Morozov E. A., Pozdnyakov D. V., Filatov N. N., Ignateva E. S., Biogeochemical Changes in Lake Ladoga: Insights from Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, pp. 1494–1508, DOI: 10.1134/S0001433822120167.
  32. Papenfus M., Schaeffer B. A., Pollard A. I., Loftin K. A., Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs, Environmental Monitoring and Assessment, 2020, Vol. 192, No. 12, pp. 1–22, DOI: 10.1007/s10661-020-08631-5.
  33. Pozdnyakov D. V., Korosov A. A., Petrova N. A., Grassl H., Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status, J. Great Lakes Research, 2013, Vol. 39, No. 1, pp. 34–45, DOI: 10.1016/j.jglr.2013.05.002.
  34. Savchuk O. P., Isaev A. V., Filatov N. N., Three-dimensional hindcast of nitrogen and phosphorus biogeochemical dynamics in Lake Onego Ecosystem, 1985–2015. Part II: seasonal dynamics and spatial features; integral fluxes, Fundamental and Applied Hydrophysics, 2022, Vol. 15, No. 2, pp. 98–109, DOI: 10.48612/fpg/9mg5-run6-4zr8.
  35. Saulquin B., Gohin F., Fanton d’Andon O., Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service, J. Operational Oceanography, 2019, Vol. 12, No. 1, pp. 47–57, DOI: 10.1080/1755876X.2018.1552358.
  36. Seegers B. N., Werdell P. J., Vandermeulen R. A. et al., Satellites for long-term monitoring of inland U. S. lakes: The MERIS time series and application for chlorophyll-a, Remote Sensing of Environment, 2021, Vol. 266, Article 112685, DOI: 10.1016/j.rse.2021.112685.
  37. Shuchman R. A., Leshkevich G., Sayers M. J. et al., An algorithm to retrieve chlorophyll, dissolved organic carbon, and suspended minerals from Great Lakes satellite data, J. Great Lakes Research, 2013, Vol. 39, No. 1, pp. 14–33, DOI: 10.1016/j.jglr.2013.06.017.
  38. Suarez E. L., Tiffay M.-C., Kalinkina N. et al., Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in large Lake Onego (Russia), Inland Waters, 2019, Vol. 9, No. 2. pp. 193–204, DOI: 10.1080/20442041.2018.1559582.
  39. Volpe G., Santoleri R., Vellucci V. et al., The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates, Remote Sensing of Environment, 2007, Vol. 107, No. 4, pp. 625–638, DOI: 10.1016/j.rse.2006.10.017.
  40. Volpe G., Colella S., Forneris V., Tronconi C., Santoleri R., The Mediterranean Ocean Colour Observing System — system development and product validation, Ocean Science, 2012, Vol. 8, No. 5, pp. 869–883, DOI: 10.5194/os-8-869-2012.
  41. Volpe G., Colella S., Brando V. et al., The Mediterranean Ocean Colour Level 3 Operational Multi-Sensor Processing, Ocean Science, 2019, Vol. 15, No. 1, pp. 127–146, DOI: 10.5194/os-15-127-2019.