ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 329-335

On the possibility to determine the concentration of Arctic sea ice using SMOS satellite data

V.V. Tikhonov 1, 2, 3 , T.A. Alekseeva 3, 1 , E.V. Afanasyeva 3, 1 , J.V. Sokolova 3, 1 , I.V. Khvostov 2 , A.N. Romanov 2 
1 Space Research Institute RAS, Moscow, Russia
2 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
Accepted: 09.11.2023
DOI: 10.21046/2070-7401-2023-20-6-329-335
The paper presents the first results of comparison of the seasonal dynamics of brightness temperature of a region in the Kara Sea measured by the MIRAS radiometer (Microwave Imaging Radiometer using Aperture Synthesis) of the SMOS satellite (Soil Moisture and Ocean Salinity) with data on ice concentration obtained from satellite radar and visible images for 2019 and 2021. The analysis showed that brightness temperature is very sensitive to changes in the state of sea ice (melting, freezing, ice type) and correlates well with ice concentration. The obtained results open the possibility of using data from SMOS MIRAS to assess the state of the Arctic sea ice cover, as well as developing a methodology for analyzing the characteristics of sea ice using these data.
Keywords: satellite microwave radiometry, brightness temperature, ice concentration, visible and infrared range
Full text

References:

  1. Alekseeva T. A., Sokolova J. V., Tikhonov V. V. et al., Analysis of Sea Ice Areas Undetectable by Satellite Microwave Radiometry (ASI Algorithm) in the Arctic Ocean, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 12, pp 1690–1704, DOI: 10.1134/S0001433821120033.
  2. Alekseeva T. A., Sokolova J. V., Afanasyeva E. V. et al., The Contribution of Sea-Ice Contamination to Inaccuracies in Sea-Ice Concentration Retrieval from Satellite Microwave Radiometry Data during the Ice-Melt Period, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1470–1484, DOI: 10.1134/S0001433822120039.
  3. Afanasyeva E. V., Alekseeva T. A., Sokolova J. V. et al., AARI methodology for sea ice charts composition, Russian Arctic, 2019, No. 7, pp. 5–20 (in Russian), DOI: 10.24411/2658-4255-2019-10071.
  4. Zabolotskikh E. V., Khvorostovsky K. S., Zhivotovskaya M. A. et al., Satellite microwave remote sensing of the Arctic sea ice: Review, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 9–34 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-9-34.
  5. Karelin I. D., Karklin V. P., Pripai i zapripainye polyn’i arkticheskikh morei sibirskogo shel’fa v kontse XX – nachale XXI veka (Landfast ice and landfast ice polynyas of the Arctic seas of the Siberian shelf at the end of the XX – beginning of the XXI century), Saint Petersburg: AARI, 2012, 180 p. (in Russian).
  6. Masanov A., Al'bom ledyanykh obrazovanii v moryakh (Album of ice formations in the sea), N. V. Skutina (ed.), Saint Petersburg: AARI, 2022, 140 p.
  7. Tikhonov V. V., Raev M. D., Sharkov E. A. et al., Satellite microwave radiometry of sea ice of polar regions: a review, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 1012–1030, https://doi.org/10.1134/S0001433816090267.
  8. Tikhonov V. V., Khvostov I. V., Alekseeva T. A. et al., Analysis of the Winter Hydrological Regime of the Yenisei, Pechora, and Khatanga Estuaries Using SMOS Data, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1519–1531, DOI: 10.1134/S0001433822120234.
  9. Alekseeva T., Tikhonov V., Frolov S. et al., Comparison of Arctic Sea Ice Concentrations from the NASA Team, ASI, and VASIA2 Algorithms with Summer and Winter Ship Data, Remote Sensing, 2019, Vol. 11, No. 21, Article 2481, https://doi.org/10.3390/rs11212481.
  10. Emery W., Camps A., Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Application, Elsevier Inc., 2017, 856 p.
  11. Gutierrez A., Castro R., Vieira P., Lopes G., Barbosa J., SMOS L1 Processor L1c Data Processing Model, Lisboa: DEIMOS Engenharia, 2017, 83 p., https://earth.esa.int/eogateway/documents/20142/37627/SMOS-L1c-Data-Processing-Models.pdf.
  12. McMullan K. D., Brown M. A., Martín-Neira M. et al., SMOS: The payload, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 3, pp. 594–605, DOI: 10.1109/TGRS.2007.914809.
  13. Oliva R., Martín-Neira M., Corbella I. et al., SMOS Third Mission Reprocessing after 10 Years in Orbit, Remote Sensing, 2020, Vol. 10, No. 12, Article 1645, 24 p., https://doi.org/10.3390/rs12101645.
  14. Petrich C., Eicken H., Chapter 2. Growth, Structure and Properties of Sea Ice, In: Sea Ice, Wiley-Blackwell, 2010, pp. 23–77.
  15. Sahr K., White D., Kimerling A. J., Geodesic Discrete Global Grid System, Cartography and Geographic Information Science, 2003, Vol. 30, No. 2, pp. 121–134, DOI: 10.1559/152304003100011090.
  16. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research: Oceans, 2008, Vol. 113, Article C02S03, https://doi.org/10.1029/2005JC003384.
  17. Tikhonov V. V., Boyarskii D. A., Sharkov E. A. et al., Microwave Model of Radiation from the Multilayer “Ocean–atmosphere” System for Remote Sensing Studies of the Polar Regions, Progress in Electromagnetics Research B, 2014, Vol. 59, pp. 123–133, DOI: 10.2528/PIERB14021706.