ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 258-275

On horizontal water circulation in Lake Sevan (satellite information)

A.I. Ginzburg 1 , N.A. Sheremet 1 , A.G. Kostianoy 1, 2, 3 , O.Yu. Lavrova 4 
1 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Witte University, Moscow, Russia
3 Maykop State Technological University, Maykop, Russia
4 Space Research Institute RAS, Moscow, Russia
Accepted: 14.11.2023
DOI: 10.21046/2070-7401-2023-20-6-258-275
The article examines the variability of eddy dynamics in the surface layer of Lake Sevan in summer, together with the variability of wind speed and direction over the basin. The study was carried from analysis of a series of sequential Sentinel-2A/B MSI (Multispectral Instrument) visible satellite images with high spatiotemporal resolution (10 m, 5–10 days) with close-in-dates Sentinel-1A/B SAR radar images and data on wind speed and direction of a number of meteorological stations (MS) in the period from July 11 to August 15, 2019. The analysis showed that during the period under review in Small Sevan, with stable northeastern winds, a traditional cyclonic circulation was observed. The main changes in circulation in Large Sevan took place from July 11 to July 31: on July 11, the predominant circulation element was an eddy dipole from a cyclone in the southern half of the deep-water part of the basin (~20 km in the latitudinal direction and ~15 km in the meridional direction) and an anticyclone of approximately the same size to the north of it; from July 16 to July 26, the cyclonic eddy increased in the meridional direction and included two interconnected cyclonic eddies of a smaller size (~7 km); from July 31 to August 15, the cyclonic gyre with attached anticyclones on its periphery invariably occupied most of the deep-sea basin. Local wind directions over Large Sevan, the speed of which throughout the entire period under review generally did not exceed 2 m/s, changed noticeably on time scales of a day and, perhaps, smaller. At the same time, according to the radar images, winds of eastern and southeastern directions were often observed, information about which was absent in the MS archives available to us.
Keywords: Lake Sevan, water circulation of Lake Sevan, eddies, eddy dipoles, visible satellite images, radar images, wind effects
Full text

References:

  1. Ainbund M. M., On the issue of the thermal regime of Lake Sevan, In: Rezul’taty kompleksnykh issledovanii po Sevanskoi probleme (Results of comprehensive research on the Sevan problem), Yerevan: Publ. house AN Arm. USSR, 1961, Vol. 1, pp. 323–335 (in Russian).
  2. Akopyan M. A., Demin Yu.L., Numerical modeling of the currents of Lake Sevan, Meteorologiya i gidrologiya, 1982, No. 8, pp. 68–74 (in Russian).
  3. Akopyan M. A., Torgomyan G. M., Calculation of the velocity field of Lake Sevan by mathematical modeling, Izvestiya Akademii nauk Armyanskoi SSR, Seriya tekhnicheskikh nauk, 1980, Vol. 33, No. 1, pp. 34–39 (in Russian).
  4. Ginzburg A. I., Kostianoy A. G., Sheremet N. A., Kouraev A. V., Horizontal water circulation and morphometric parameters of Lake Sevan in the modern period (satellite information), Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 230–243 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-230-243.
  5. Integral’naya otsenka ekologicheskogo sostoyaniya ozera Sevan (GEO — Lake Sevan) (Integrated assessment of the ecological state of Lake Sevan), Association “For SHD”/UNEPCom, Yerevan, 2011, 42 p. (in Russian), https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/92/original/sevan-report---fin.pdf?1483646517.
  6. Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Complex satellite monitoring of the Russian seas, Moscow: IKI RAN, 2011, 470 p. (in Russian).
  7. Lavrova O. Yu., Mityagina M. I., Uvarov I. A., Loupian E. A., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  8. Margaryan V. G., Avetisyan G. D., Cargsyan A. T., Margaryan P. N., Regularities of spatio-temporal distribution of absolute minimum temperatures of surface air layer in Lake Sevan basin, Izvestiya RAN. Seriya geograficheskaya, 2022, Vol. 86, No. 2, pp. 232–242 (in Russian), DOI: 10.31857/S2587556622020078.
  9. Hovhannissian R. H., Lake Sevan yesterday, today…, Yerevan: Publ. House of NAS RA “Gitutjun” 1994, 478 p. (in Russian).
  10. Why Sevan “blooms” and how to deal with it — the Ministry of the Environment explained, SPUTNIK, Armenia, 31 July 2022 (in Russian), https://ru.armeniasputnik.am/20220730/pochemu-tsvetet-sevan-i-kak-s-etim-borotsya--minokruzhayuschey-sredy-poyasnilo-45912598.html.
  11. Rumyantsev V. A., Drabkova V. G., Izmailova A. G., Lake Sevan, In: Velikie ozera mira (Great Lakes of the World), Saint Petersburg: Lema, 2012, pp. 271–280 (in Russian).
  12. Torgomyan G. M., Currents of Lake Sevan, Izvestiya Akademii nauk Armyanskoi SSR, Seriya tekhnicheskikh nauk, 1975, Vol. 28, No. 3, pp. 45–50 (in Russian).
  13. Fedorov K. N., Ginsburg A. I., The Near-surface Layer of the Ocean, Utrecht, Netherlands: VSP, 1992, 259 p.
  14. Ekologiya ozera Sevan v period povysheniya ego urovnya. Rezul’taty issledovanii Rossiisko-Armyanskoi biologicheskoi expeditsii po gidroekologicheskomu obsledovaniyu ozera Sevan (Armeniya) (20052009) (Ecology of Lake Sevan during the period of water level rise. The results of Russian-Armenian biological expedition for hydroecological survey of Lake Sevan (Armenia) (2005–2009), Makhachkala: Nauka Publishers, Dagestan Scientific Center, 2010, 348 p. (in Russian).
  15. Babayan A., Hakobyan S., Jenderedjian K., Muradyan S., Voskanov M., Lake Sevan: Experience and Lessons Learned Brief, 2005, pp. 347–362, https://iwlearn.net/resolveuid/6af5017fa3a56bc7b8428f71c100362e.
  16. Dokken S. T., Wahl T., Observations of spiral eddies along the Norwegian Coast in ERS SAR images, FFI Rapport 96/01463, 1996.
  17. Fedorov K. N., Ginsburg A. I., “Mushroom-like” currents (vortex dipoles) in the ocean and in a laboratory tank, Annales Geophysicae, 1986, Vol. 4B, No. 5, pp. 507–516.
  18. Lavrova O. Yu., Mityagina M. I., Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 974–987.
  19. Medvedev A., Telnova N., Alekseenko N. et al., UAV-derived data application for environmental monitoring of the coastal area of Lake Sevan, Armenia with a changing water level, Remote Sensing, 2020, Vol. 12, Article 3821, DOI: 103390/rs12223821.
  20. Nazaretyan H., The Ups and Downs of Lake Sevan, EVN Report, July 26, 2021, https://evnreport.com/magazine-issues/the-ups-and-downs-of-lake-sevan/.
  21. Wilkinson I. P., Lake Sevan: Evolution, Biotic Variability and Ecological Degradation, In: Large Asian Lakes in a Changing World, S. Mischke (ed.), Springer Water Book Ser., Cham: Springer, 2020, Ch. 2, pp. 35–63, https://doi.org/10.1007/978-3-030-42254-7_2.