ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 92-116

Analysis of temperature anomaly indicators to identify peat fires

M.A. Medvedeva 1 , V.Yu. Itkin 1, 2 , A.A. Sirin 1 
1 Institute of Forest Science RAS, Moscow Oblast, Uspenskoye, Russia
2 Gubkin University, Moscow, Russia
Accepted: 31.10.2023
DOI: 10.21046/2070-7401-2023-20-6-92-116
Peat fires differ from other wildfires in their duration, carbon losses, emissions of greenhouse gases and highly hazardous products of combustion, and other environmental impacts. Peatland fires can be identified by overlaying fire data obtained by Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) hotspots on existing maps of peatland distribution. However, not all wildfires that occur in peat bogs and drained peatlands become subterranean (peat) fires. The possibility of using fire parameters (Fire Radiation Power — FRP, temperature, duration, etc.) derived from MODIS data to detect peat fires and to separate them from surface fires was analysed using data from the large-scale fires of 2010 in the central European part of Russia. A special peat-fire-index based on the use of several parameters (maximum FRP and burning temperature values, burning duration and fire area) was proposed and tested, which showed up to 98 % accuracy for the detection of peat fires. The results require testing with other areas, but provide strong evidence that remote sensing data can be used to detect peat fires.
Keywords: remote sensing, thermal data, peatlands, hotspots, vegetation cover, Terra/Aqua MODIS, fire index
Full text

References:

  1. Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V., Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 9–27 (in Russian).
  2. Vompersky S. E., Ivanov A. I., Tsyganova O. P., Valyaeva N. A., Dubinin A. I., Glukhov A. I., Markelova L. G., Bog organic soils and bogs of Russia and carbon pool of their peats, Eurasian Soil Science, 1996, Vol. 28, pp. 91–105.
  3. Vompersky S. E., Sirin A. A., Salnikov A. A. et al., Estimation of Forest Cover Extent over Peatland and Paludified Shallow Peatlands in Russia, Contemporary Problems of Ecology, 2011, Vol. 4, pp. 734–741, DOI: 0.1134/s1995425511070058.
  4. Glukhova T. V., Sirin A. A., Losses of soil carbon upon a fire on a drained forested raised bog, Eurasian Soil Science, 2018, No. 51, pp. 542–549, DOI: 10.1134/S1064229318050034.
  5. Loupian E. A., Proshin A. A., Bourtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  6. Loupian E. A., Balashov I. V., Senko K. S. et al., An updated long-term series of data on fires on the territory of Russia according to MODIS collection 6, Materialy 18-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 18th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow, IKI RAS, 16–20 Nov. 2020, p. 341 (in Russian), DOI: 10.21046/18DZZconf-2020a.
  7. Loupian E. A., Stytsenko F. V., Senko K. S. et al., Burnt area assessment using MODIS collection 6 active fire data, Sovremennye Problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 178–192 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-178-192.
  8. Revich B. A., Shaposhnikov D. A., Pershagen G., New epidemiological model for assessment of the impact of extremely hot weather and air pollution on mortality (in case of the Moscow heat wave of 2010), The Russian J. Preventive Medicine, 2015, Vol. 18, No. 5, pp. 29–33 (in Russian).
  9. Sirin A., Minayeva T., Vozbrannaya A., Bartalev S., How to avoid peat fires? Science of Russia, 2011, No. 2, pp. 13–21 (in Russian).
  10. Sirin A. A., Maslov A. A., Valyaeva T. A. et al., Mapping of Peatlands in the Moscow Oblast Based on High Resolution Remote Sensing Data, Contemporary Problems of Ecology, 2014, Vol. 79, No. 7, pp. 809–815, DOI: 10.1134/S1995425514070117.
  11. Sirin A. A., Medvedeva M. A., Makarov D. A. et al., Multispectral satellite based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia), Ecological Engineering, 2020, Vol. 158, Article 106044, DOI: 10.1016/j.ecoleng.2020.106044.
  12. Sirin A., Medvedeva M., Korotkov V. et al., Addressing Peatland Rewetting in Russian Federation Climate Reporting, Land, 2021, Vol. 10, Article 1200, DOI: 10.3390/land10111200.
  13. Sirin A. A., Medvedeva M. A., Itkin V. Yu. et al., Peat fire detection to estimate greenhouse gas emissions, Meteorologiya i gidrologiya, 2022, No. 10, pp. 33–45 (in Russian), DOI: 10.52002/0130-2906-2022-10-33-45.
  14. Suslov V. I., Ibragimov N. M., Talysheva L. P., Tsyplakov A. A., Econometrics: Textbook, Novosibirsk: Publ. House SB RAS, 2005, 741 p. (in Russian).
  15. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC Methodology Report, Hiraishi T., Krug T., Tanabe K., Srivastava N., Baasansuren J., Fukuda M., Troxler T. G. (eds.), Switzerland: IPCC, 2014, 354 p., https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/.
  16. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia E., Tanabe K., Kranjc A., Baasansuren J., Fukuda M., Ngarize S., Osako A., Pyrozhenko Y., Shermanau P., Federici S. (eds.), Switzerland: IPCC, 2019, https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
  17. Assessment on peatlands, biodiversity and climate change, Parish F., Sirin A., Charman D., Joosten H., Minayeva T., Silvius M., Stringer L. (eds.), Wageningen: Global Environment Centre, Kuala Lumpur and Wetlands Intern., 2008, 179 p.
  18. Barriopedro D., Fischer E. M., Luterbacher J. et al., The hot summer of 2010: redrawing the temperature record map of Europe, Science, 2011, Vol. 332, Issue 6026, pp. 220–224, DOI: 10.1126/science.1201224.
  19. Blain D., Row C., Alm J., Byrne K., Parish F., Duchemin É., Huttunen J. T., Tremblay A., Delmas R., Menezes C. F. S., Delmas R., Minayeva T., Pinguelli Rosa L. P., Sirin A., Vol. 4: Agriculture, forestry and other land use, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Eggleston H. S., Buendia L., Miwa K., Ngara T., Tanabe K. (eds.), Japan: IGES, 2006, Ch. 7: Wetlands, pp. 7.1–7.24.
  20. Burke C., Wich S., Kusin K. et al., Thermal-Drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires, Drones, 2019, Vol. 3, Issue 1, Article 23, DOI: 10.3390/drones3010023.
  21. Cahyono B. K., Aditya T., Istarno, The Determination of Priority Areas for the Restoration of Degraded Tropical Peatland Using Hydrological, Topographical, and Remote Sensing Approaches, Land, 2022, Vol. 11, Issue 7, Article 1094, DOI: 10.3390/land11071094.
  22. Freeborn P. H., Wooster M. J., Roy D. P., Cochrane M. A., Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation, Geophysical Research Letters, 2014, Vol. 41, Issue 6, pp. 1988–1994, DOI: 10.1002/2013GL059086.
  23. Giglio L., Descloitres J., Justice C. O., Kaufman Y. J., An enhanced contextual fire detection algorithm for MODIS, Remote Sensing of Environment, 2003, Vol. 87, Issues 2–3, pp. 273–282.
  24. Hu Y., Fernandez-Anez N., Smith T. E. L., Rein G., Review of emissions from smouldering peat fires and their contribution to regional haze episodes, Intern. J. Wildland Fire, 2018, Vol. 27, No. 5, pp. 293–312, DOI: 10.1071/WF17084.
  25. Huang X., Rein G., Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply, Intern. J. Wildland Fire, 2017, Vol. 26, No. 11, pp. 907–918, DOI: 10.1071/WF16198.
  26. Jia G., Shevliakova E., Artaxo P., De Noblet-Ducoudré N., Houghton R., House J., Kitajima K., Lennard C., Popp A., Sirin A., Sukumar R., Verchot L., Land–climate interactions, In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Shukla P. R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.-O., Roberts D. C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J. (eds.), 2019, pp. 131–248, https://www.ipcc.ch/srccl/.
  27. Joosten H., Sirin A., Couwenberg J. et al., The role of peatlands in climate regulation, In: Peatland Restoration and Ecosystem Services: Science, Policy and Practice, Ecological Reviews, Bonn A., Joosten H., Evans M., Stoneman R., Allott T. (eds.), Cambridge: Cambridge University Press, 2016, pp. 63–76, DOI: 10.1017/CBO9781139177788.005.
  28. Kaufman Y. J., Justice C. O., Flynn L. P., Kendall J. D., Prins E. M., Giglio L., Ward D. E., Menzel W. P., Setzer A. W., Potential global fire monitoring from EOS-MODIS, J. Geophysical Research, 1998, Vol. 103, No. D24, pp. 32215–32238.
  29. Konovalov I. B., Beekmann M., Kuznetsova I. N. et al., Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region, Atmospheric Chemistry and Physics, 2011, Vol. 11, Issue 19, pp. 10031–10056, DOI: 10.5194/acp-11-10031-2011.
  30. Leifeld J., Wüst-Galley C., Page S., Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100, Nature Climate Change, 2019, Vol. 9, Issue 12, pp. 945–947, DOI: 10.1038/s41558-019-0615-5.
  31. Loisel J., Gallego-Sala A. V., Amesbury M. J. et al., Expert assessment of future vulnerability of the global peatland carbon sink, Nature Climate Change, 2021, Vol. 11, Issue 1, pp. 70–77, DOI: 10.1038/s41558-020-00944-0.
  32. Marlier M. E., Liu T., Yu K. et al., Fires, smoke exposure, and public health: An integrative framework to maximize health benefits from peatland restoration, GeoHealth, 2019, Vol. 3, Issue 7, pp. 178–189, DOI: 10.1029/2019GH000191.
  33. Minayeva T., Sirin A., Stracher G. B., The Peat Fires of Russia, In: Coal and Peat Fires: A Global Perspective. Vol. 2: Photographs and Multimedia Tours, Stracher G. B., Prakash A. Sokol E. V. (eds.), Amsterdam: Elsevier, 2013, pp. 375–394.
  34. Nelson K., Chasme L., Hopkinso C., Quantifying Lidar Elevation Accuracy: Parameterization and Wavelength Selection for Optimal Ground Classifications Based on Time since Fire/Disturbance, Remote Sensing, 2022, Vol. 14, Article 5080, DOI: 10.3390/rs14205080.
  35. Page S. E., Siegert F., Rieley J. O. et al., The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 2002, Vol. 420, No. 6911, pp. 61–65, DOI: 10.1038/nature01131.
  36. Page S. E., Rieley J. O., Banks C. J., Global and regional importance of the tropical peatland carbon pool, Global Change Biology, 2011, Vol. 17, Issue 2, pp. 798–818, DOI: 10.1111/j.1365-2486.2010.02279.x.
  37. Poulter B., Christensen Jr. N. L., Halpin P. N., Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases, J. Geophysical Research: Atmospheres, 2006, Vol. 111, Article D06301, DOI: 10.1029/2005JD006455.
  38. Prasetyo L. B., Setiawan Y., Condro A. A. et al., Assessing Sumatran Peat Vulnerability to Fire under Various Condition of ENSO Phases Using Machine Learning Approaches, Forests, 2022, Vol. 13, Issue 6, Article 828, DOI: 10.3390/f13060828.
  39. Rein G., Smouldering fires and natural fuels, In: Fire phenomena and the earth system: An interdisciplinary guide to fire science, Belcher C. M. (ed.), New York: John Wiley and Sons Limited, 2013, pp. 15–34, DOI: 10.1002/9781118529539.
  40. Rein G., Huang X., Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives, Current Opinion in Environmental Science and Health, 2021, Vol. 24, Article 100296, DOI: 10.1016/j.coesh.2021.100296.
  41. Rossi S., Tubiello F. N., Prosperi P. et al., FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires, Climatic Change, 2016, Vol. 135, Issue 3–4, pp. 699–711, DOI: 10.1007/s10584-015-1584-y.
  42. Safronov A. N., Fokeeva E. V., Rakitin V. S. et al., Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations, Remote Sensing, 2015, Vol. 7, Issue 1, pp. 395–429, DOI: 10.3390/rs70100395.
  43. Schulte M. L., McLaughlin D. L., Wurster F. C. et al., Short- and long-term hydrologic controls on smouldering fire in wetland soils, Intern. J. Wildland Fire, 2019, Vol. 28, No. 3, pp. 177–186, DOI: 10.1071/WF18086.
  44. Sirin A., Maslov A., Makarov D. et al., Assessing Wood and Soil Carbon Losses from a Forest-Peat Fire in the Boreo-Nemoral Zone, Forests, 2021, Vol. 12, Issue 7, Article 880, DOI: 10.3390/f12070880.
  45. Sirin A., Medvedeva M., Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires, Remote Sensing, 2022, Vol. 14, Article 194, DOI: 10.3390/rs14010194.
  46. Sirin A., Minayeva T., Yurkovskaya T. et al., Russian Federation (European Part), In: Mires and Peatlands of Europe: Status, Distribution and Conservation, Joosten H., Tanneberger F., Moen A. (eds.), Stuttgart: Schweizerbart Science Publ., 2017, pp. 589–616, DOI: 10.1127/mireseurope/2017/0001-0049.
  47. Tanneberger F., Tegetmeyer C., Busse S. et al., The peatland map of Europe, Mires Peat, 2017, Vol. 19, Article 22, https://doi.org/10.19189/MaPP.2016.OMB.264.
  48. Turetsky M. R., Benscoter B., Page S. et al., Global vulnerability of peatlands to fire and carbon loss, Nature Geoscience, 2015, Vol. 8, No. 1, pp. 11–14, DOI: 10.1038/ngeo2325.
  49. Usup A., Hayasaka H., Peatland Fire Weather Conditions in Central Kalimantan, Indonesia, Fire, 2023, Vol. 6, Issue 5, Article 182, DOI: 10.3390/fire6050182.
  50. Yuan H., Restuccia F., Rein G., Spontaneous ignition of soils: a multi-step reaction scheme to simulate self-heating ignition of smouldering peat fires, Intern. J. Wildland Fire, 2021, Vol. 30, No. 6, pp. 440–453, DOI: 10.1071/WF19128.