ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 319-326

Using natural language processing techniques to analyze the use of Google Earth Engine in 2015–2023 remote sensing research publications

A.B. Jaxylykova 1 , A.M. Mirash 2 , A.A. Pak 1 , Armanovich Ziyaden 1 
1 Institute of Information and Computational Technologies, Almaty, Kazakhstan
2 BL-group, Almaty, Kazakhstan
Accepted: 10.10.2023
DOI: 10.21046/2070-7401-2023-20-5-319-326
Remote sensing is of key importance for the sustainable development of human activities. Previously, the field of satellite data processing was dominated by specialized professional packages with high costs. With the expansion of information technology capabilities, the landscape of this field has undergone a significant transformation due to the emergence and development of cloud-based technologies that combine built-in access to satellite databases with tools for their processing. The best known in this area is the Google Earth Engine (GEE) product, which first appeared in 2010. Currently, this product from Google has become a serious competitor to expensive professional satellite data processing packages, which often have a less intuitive interface, due to limited audience and financial barriers. GEE provides users with free (with certain limits on the amount of data transferred) access to most satellite databases, as well as cloud-based tools for processing them. In addition, it should be noted that GEE has opened new horizons for detailed monitoring of the environment and climate change. Its ability to process large volumes of global remote sensing data and automate the analysis of satellite imagery has opened revolutionary opportunities for users to work towards analyzing the spectral properties of the Earth’s underlying surface. The frequency of GEE use and its temporal dynamics can serve as an indicator of the potential development of remote sensing processing in different countries and in different scientific directions. The aim of this paper is to analyze the trends of GEE frequency in scientific and technical publications in the period 2015–2023 based on natural language processing techniques. The findings show a power growth in the frequency of GEE mentions in the abstracts of scientific articles between 2015 and 2022. Moreover, the dominant use of GEE is recorded in papers by authors affiliated with the PRC Academy of Sciences. Authors from US universities lose out by more than a factor of two. This situation diagnoses the outstripping growth of PRC scientific research and displacement of US scientific institutions from the leading positions in the world in the field of remote sensing.
Keywords: remote sensing, satellite databases, cloud processing technologies, Google Earth Engine, content analysis, longitudinal analysis
Full text

References:

  1. Balashov I. V., Kashnitsky A. V., Bartalev S. A. et al., VEGA-Les: information system for complex monitoring of forests and hunting grounds in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 73–88 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-73-88.
  2. Baldina E. A., Labutina I. A., Deshifrirovanie aerokosmicheskikh snimkov: uchebnik (Decoding of Aerospace Images), Moscow: KDU, Dobrosvet, 2021, 269 p. (in Russian), DOI: 10.31453/kdu.ru.978-5-7913-1163-4-2021-269.
  3. Bartalev S. A., Ershov D. V., Loupian E. A., Tolpin V. A., Possibilities of Satellite Service VEGA Using for Different Tasks of Land Ecosystems Monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 49–56 (in Russian).
  4. Gavrilova L. A., Limonov A. N., Photogrammetry and remote sensing, Moscow: Academic Project, 2020, 296 p. (in Russian).
  5. Denisov P. V., Sereda I. I., Troshko K. A. et al., Opportunities and experience of operational remote monitoring of winter crops condition in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 171–185 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-171-185.
  6. Elizarov D. A., Knyazev N. A., Lavrova O. Yu., Uvarov I. A., Integration into the See the Sea information system of acoustic Doppler current profiler data obtained concurrently with satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 244–253 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-244-253.
  7. Konstantinova A. M., Balashov I. V., Kashnitsky A. V. et al., The possibilities of organizing long-term remote monitoring of large sources of anthropogenic pollution to assess their impact on the environment, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 41–52 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-41-52.
  8. Loupian E. A., Burtsev M. A., Proshin A. A., Kobets D. A., Evolution of remote monitoring information systems development concepts, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 53–66 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-53-66.
  9. Loupian E. A., Konstantinova A. M., Balashov I. V. et al., Development of a system for analyzing the state of environment in areas of large industrial facilities, tailings and dumps, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 243–261 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-243-261.
  10. Loupian E. A., Proshin A. A., Burtsev M. A. et al., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
  11. Proshin A. A., Loupian E. A., Balashov I. V. et al., Technology of satellite data dynamic block provision to distributed processing systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 79–93 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-79–93.
  12. Sutyrina E. N., Distantsionnoe zondirovanie Zemli (Remote sensing of the Earth), Irkutsk: Izd. IGU, 2013, 165 p. (in Russian).
  13. Chandra A. M., Gosh S. K., Remote sensing and geographical information systems, Alpha Science, 2006, 298 p.
  14. Shinkarenko S. S., Bartalev S. A. (2023a), The consequences of damage to the Kakhovka Reservoir dam on the Dnieper River, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 314–322 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-314-322.
  15. Shinkarenko S. S., Bartalev S. A. (2023b), Analysis of the influence of species composition, projective cover and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3. pp. 176–192 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-176-192.
  16. Biau G., Scornet E., A random forest guided tour, Test, 2016, Vol. 25, pp. 197–227, DOI: 10.1007/s11749-016-0481-7.
  17. Gorelick N., Hancher M., Dixon M. et al., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, Vol. 202, pp. 18–27, DOI: 10.1016/j.rse.2017.06.031.
  18. Khvatish N. V., Sokolova T. A., Moskvitin G. I., Taraskin M. M., Use of geoinformation systems based on intellectual technologies in favor of a company, IOP Conf. Ser.: Earth and Environmental Science, IOP Publ., 2020, Vol. 579, No. 1, Article 012150, DOI: 10.1088/1755-1315/579/1/012150.
  19. Mutanga O., Kumar L., Google earth engine applications, Remote Sensing, 2019, Vol. 11, No. 5, Article 591, DOI: 10.3390/rs11050591.
  20. Perilla G. A., Mas J. F., Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube, Investigaciones Geográficas, 2020, No. 101, DOI: 10.14350/rig.59929.
  21. Pradhan S., Bajracharya B., Shakya K., Shakya B., Geospatial information technology for information management and dissemination, Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience in Hindu Kush Himalaya Region: A Decade of Experience from SERVIR, 2021, pp. 251–267, DOI: 10.1007/978-3-030-73569-2.
  22. Reis R. S., Datia N., Pós-de-Mina Pato M., A primer on understanding Google Earth Engine APIs, i-ETC: ISEL IAJETC, 2020, Vol. 6, No. 1, pp. 1–11, DOI: 10400.21/12353.
  23. Tamiminia H., Salehi B. Mahdianpari M. et al., Google Earth Engine for geo-big data applications: A meta-analysis and systematic review, ISPRS J. Photogrammetry and Remote Sensing, 2020, Vol. 164, pp. 52–170, DOI: 10.1016/j.isprsjprs.2020.04.001.
  24. Uzhinskiy A., Google Earth Engine and machine learning for Earth monitoring, The 6th Intern. Workshop on Deep Learning in Computational Physics, 2022, Article 21, DOI: 10.22323/1.429.0021.
  25. Wu W., Liu Y., Hu M., Editorial on Special Issue “Geo-Information Technology and Its Applications”, ISPRS Intern. J. Geo-Information, 2022, Vol. 11, No. 6, Article 347, DOI: 10.3390/ijgi11060347.