ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 273-284

On biogenic films manifestations in satellite multispectral images of eutrophic water bodies

O.A. Danilicheva 1 , S.A. Ermakov 1, 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Volga State University of Water Transport, Nizhny Novgorod, Russia
Accepted: 14.10.2023
DOI: 10.21046/2070-7401-2023-20-5-273-284
The available data of satellite multispectral observations of a eutrophicated reservoir using the example of the Gorky Reservoir, in particular in the near-infrared (NIR) and short-wave infrared (SWIR) bands, in areas of intense phytoplankton blooming, as well as in spills of surfactant on the water surface, were analyzed. Satellite data from Sentinel 2 MSI and associated sub-satellite observations were used for analysis. Spectral contrasts for films of different nature and thickness in the visible and NIR/SWIR bands were analyzed. It is shown that biogenic films on the water surface in areas of intense phytoplankton blooming can be thick and appear as areas of dense “crust”, which are characterized by significant contrasts in images of NIR and SWIR bands. Thin biogenic films, which are considered to be quasi-monomolecular, are weakly visible in SWIR images and are comparable in contrast values to monomolecular surfactant films, whose contrasts in both bands are close to 1. However, in the NIR band, the contrast values of thin biogenic films are more significant and close to non-monomolecular surfactant films whose average concentration exceeds the limiting thickness of surfactant monolayers (supersaturated films). Nevertheless, in the SWIR range, the difference between thin biogenic films and supersaturated surfactant films is significant. The specified features of contrasts in multispectral images of biogenic films can be used as additional information, for example, when solving problems of remote diagnostics of films, including microwave radars.
Keywords: biogenic films, surfactant films, satellite images, multispectral data, Sentinel 2
Full text

References:

  1. Danilicheva O. A., Ermakov S. A., Kapustin I. A., Ermoshkin A. V., Lazareva T. N., Leshchov G. V., Dobrokhotova D. V., Sergiyevskaya I. A., Manifestation of intensive phytoplankton flowering zones in radar signals during internal water bodie sounding, Trudy 7-i vserossiiskoi nauchnoi konferentsii “Problemy ekologii Volzhskogo basseina” (Proc. All-Russia Scientific Conf. “Ecology problems of the Volga basin”), Nizhny Novgorod, 2022, Issue 5, 4 p. (in Russian).
  2. Ermakov S. A., Vliyanie plenok na dinamiku gravitatsionno-kapillyarnykh voln (Impact of films on the dynamics of gravity-capillary waves), Nizhny Novgorod: IPF RAN, 2010, 164 p. (in Russian).
  3. Kalinina O. Yu., Sapozhnikov F. V., The study results of plastic waste overgrowth with micro-algae, J. Environmental Earth and Energy Study, 2019, No. 4, pp. 46–53 (in Russian), DOI: 10.5281/zenodo.3662774.
  4. Molkov A. A., Kapustin I. A., Ermoshkin A. V., Ermakov S. A., Remote sensing methods for measuring the thickness of oil/oil product films on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-9-27.
  5. Alpers W., Hühnerfuss H., The damping of ocean waves by surface films: A new look at an old problem, J. Geophysical Research: Oceans, 1989, Vol. 94, No. C5, pp. 6251–6265, DOI: 10.1029/JC094iC05p06251.
  6. Alpers W., Holt B., Zeng K., Oil spill detection by imaging radars: Challenges and pitfalls, Remote Sensing of Environment, 2017, Vol. 201, pp. 133–147, DOI: 10.1016/j.rse.2017.09.002.
  7. Ermakov S. A., Kijashko S. V., Laboratory study of the damping of parametric ripples due to surfactant films, Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing, Berlin; Heidelberg: Springer, 2006, pp. 113–128, DOI: 10.1007/3-540-33271-5_12.
  8. Ermakov S. A., Kapustin I. A., Lazareva T. N., Sergievskaya I. A., Andriyanova N. V., On the possibilities of radar probing of eutrophication zones in water reservoirs, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49, pp. 307–314, DOI: 10.1134/S0001433813030055.
  9. Ermakov S. A., Sergievskaya I. A., Da Silva J. C. et al., Remote sensing of organic films on the water surface using dual co-polarized ship-based X-/C-/S-band radar and TerraSAR-X, Remote Sensing, 2018, Vol. 10, No. 7, Article 1097, DOI: 10.3390/rs10071097.
  10. Fingas M., Brown C., Review of oil spill remote sensing, Marine Pollution Bull., 2014, Vol. 83, No. 1, pp. 9–23, DOI: 10.1016/j.marpolbul.2014.03.059.
  11. Gade M., Alpers W., Hühnerfuss H., Masuko H., Kobayashi T., Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR‐C/X‐SAR, J. Geophysical Research: Oceans, 1998, Vol. 103, No. C9, pp. 18851–18866, DOI: 10.1029/97JC01915.
  12. Gade M., Hühnerfuss H., Korenowski G., Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions, and Remote Sensing, Berlin; Heidelberg: Springer-Verlag, 2006, 341 p., DOI: 10.1007/3-540-33271-5.
  13. Gilerson A. A., Gitelson A. A., Zhou J. et al., Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands, Optics Express, 2010, Vol. 18, No. 23, pp. 24109–24125, DOI: 10.1364/OE.18.024109.
  14. Gitelson A. A., Nature of the peak near 700-nm on the radiance spectra and its application for remote estimation of phytoplankton pigments in inland waters, 8th Meeting on Optical Engineering in Israel: Optical Engineering and Remote Sensing, 1993, Vol. 1971, pp. 170–179, DOI: 10.1117/12.150992.
  15. Hu C., A novel ocean color index to detect floating algae in the global oceans, Remote Sensing of Environment, 2009, Vol. 113, No. 10, pp. 2118–2129, DOI: 10.1016/j.rse.2009.05.012.
  16. Hu C., Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations, Earth System Science Data, 2022, Vol. 14, No. 3, pp. 1183–1192, DOI: 10.5194/essd-14-1183-2022.
  17. Hühnerfuss H., Lange P., Walter W., Wave damping by monomolecular surface films and their chemical structure, Part II: Variation of the hydrophilic part of the film molecules including natural substances, J. Marine Research, 1984, Vol. 42, No. 3, pp. 737–759.
  18. Kram M., Laverman L., System and method for optical detection of petroleum and other products in an environment, Patent US 7227139, Reg. 05.06.2007.
  19. Lin I. I., Alpers W., Liu W. T., First evidence for the detection of natural surface films by the QuikSCAT scatterometer, Geophysical Research Letters, 2003, Vol. 30, No. 13, Article 1713, DOI: 10.1029/2003GL017415.
  20. Molkov A. A., Fedorov S. V., Pelevin V. V., Korchemkina E. N., Regional models for high-resolution retrieval of chlorophyll a and TSM concentrations in the Gorky Reservoir by Sentinel 2 imagery, Remote Sensing, 2019, Vol. 11, No. 10, Article 1215, DOI: 10.3390/rs11101215.
  21. O’Reilly J. E., Maritorena S., O’Brien M. C., Siegel D. A., Toole D., Menzies D., Smith R. C., Mueller J. L., Mitchell B. G., Kahru M. et al., SeaWiFS Postlaunch Calibration and Validation Analyses, NASA Technical Memorandum, Greenbelt, Maryland: NASA Goddard Space Flight Center, 2000, Vol. 11, Part 3, Ch. 2, pp. 9–23.
  22. Qi L., Wang M., Hu C., Holt B., On the capacity of Sentinel 1 synthetic aperture radar in detecting floating macroalgae and other floating matters, Remote Sensing of Environment, 2022, Vol. 280, Article 113188, DOI: 10.1016/j.rse.2022.113188.
  23. Rajendran S., Sadooni F. N., Al-Kuwari H. A. S. et al., Monitoring oil spill in Norilsk, Russia using satellite data, Scientific Reports, 2021, Vol. 11, No. 1, Article 3817, DOI: 10.1038/s41598-021-83260-7.
  24. Scott J. C., Thomas N. H., Sea surface slicks-surface chemistry and hydrodynamics in radar remote sensing, Inst. Mathematics and its Applications Conf. Ser., Oxford; Clarendon, 1999, Vol. 69, pp. 221–230.
  25. Smith I. L., Stanton T., Law A., Plastic habitats: Algal biofilms on photic and aphotic plastics, J. Hazardous Materials Letters, 2021, Vol. 2, Article 100038, DOI: 10.1016/j.hazl.2021.100038.
  26. Zettler E. R., Mincer T. J., Amaral-Zettler L. A., Life in the “plastisphere”: microbial communities on plastic marine debris, Environmental science and technology, 2013, Vol. 47, No. 13, pp. 7137–7146, DOI: 10.1021/es401288x.
  27. Zhao J., Temimi M., Ghedira H., Hu C., Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf, Optics Express, 2014, Vol. 22, No. 11, pp. 13755–13772, DOI: 10.1364/OE.22.013755.