ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 205-216

Effects of snowmelt on seasonal and interannual vegetation dynamics in the Lena Delta

K.I. Simonova 1 
1 Komarov Botanical Institute RAS, Saint Petersburg, Russia
Accepted: 10.10.2023
DOI: 10.21046/2070-7401-2023-20-5-205-216
The article is dedicated to investigation of vegetation dynamics depending on snowmelt timing and accompanying air temperatures on Samoylov and Kurungnakh islands in Lena delta. Meteorological data, multispectral images of MODIS, Landsat-8 and Sentinel-2 have been processed to analyze seasonal and interannual (2000–2018) development of local vegetation cover. Plant community feedback to environmental conditions in the beginning of vegetation season has been studied based on snowmelt timing and daily mean air temperatures. Besides, seasonal vegetation types` dynamics have been studied. As a result of current study typical snowmelt timing and air temperature conditions have been revealed. Average air temperatures within 15 days after snowmelt have been identified for years with early, average and late snowmelt. Dependency of NDVI and sum of temperatures above 0 C has been brought to light. During the years with least amount of warm days the environmental conditions were less favorable for vegetation development in the following year.
Keywords: Arctic, vegetation dynamics, remote sensing, NDVI, snowmelt
Full text

References:

  1. Vasilchuk Yu. K., Yedoma. Part 1. Annals of geocryological research in the XIX–XX centuries, Arctica and Antarctica, 2022, No. 4, pp. 54–114 (in Russian), DOI: 10.7256/2453-8922.2022.4.39339
  2. Gusev A. P., Changes NDVI in natural and anthropogenic landscapes of the Belorusian Polesia in 2000–2020, Klimaticheskie izmeneniya i sezonnaya dinamika landshaftov (Climatic changes and seasonal dynamics of landscapes), Proc. All-Russian Scientific-Practical Conf., 2021, pp. 218–223 (in Russian), DOI: 10.26170/KFG-2021-31.
  3. Kasatkina N. I., Nelyubina Z. S., Fatykhov I. Sh., Impact of weather conditions and sowing method on seed performance of meadow clover in the middle Urals, Proc. National Academy of Sciences of Belarus, Agrarian Ser., 2021, Vol. 59, No. 2, pp. 178–185 (in Russian), DOI: 10.29235/1817-7204-2021-59-2-178-185.
  4. Korotkova E. M., Zuev V. V., The Response of the West Siberian Plant Vegetation Cover to Climate Change in 1982–2015, Issledovanie Zemli iz kosmosa, 2021, No. 6, pp. 50–59 (in Russian), DOI: 10.31857/S0205961421060051.
  5. Allen M. R., Dube O. P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K., IPCC Special Report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Chapter 1: Framing and Context, 2018, pp. 49–82.
  6. Bhatt U. S., Walker D. A., Raynolds M. K. et al., Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline, Earth Interactions, 2010, Issue 8, Vol. 14, pp. 1–20, DOI: 10.1175/2010EI315.1.
  7. Bhatt U. S., Walker D. A., Raynolds M. K. et al., Changing seasonality of panarctic tundra vegetation in relationship to climatic variables, Environmental Research Letters, 2017, Vol. 12, No. 5, Article 055003, DOI: 10.1088/1748-9326/aa6b0b.
  8. Boike J., Kattenstroth B., Abramova K. et al., Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences, 2013, Issue 3, Vol. 10, pp. 2105–2128, DOI: 10.5194/bg-10-2105-2013.
  9. Boike J., Cable W. L., Bolshiyanov D. Yu. et al., Continuous measurements in soil and air at the permafrost long-term observatory at Samoylov Station (2002 et seq), Alfred Wegener Inst. — Research Unit Potsdam, PANGAEA, 2022, DOI: 10.1594/PANGAEA.947032.
  10. Chapin F. S., Direct and Indirect Effects of Temperature on Arctic Plants, Polar Biology, 1983, Vol. 2, pp. 47–52, DOI: 10.1007/BF00258285.
  11. Chapin F. S., Bloom A. J., Phosphate absorption: adaptation of tundra graminoids to a low temperature, low phosphorus environment, Oikos, 1976, Vol. 27, No. 1, pp. 111–121, DOI: 10.2307/3543439.
  12. Ding Q., Schweiger A., L’Heureux M. et al., Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice, Nature Climate Change, 2017, Issue 4, Vol. 7, pp. 289–295, DOI: 10.1038/nclimate3241.
  13. Gamon J. A., Huemmrich K. F., Stone R. S., Tweedie C. E., Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt, Remote Sensing of Environment, 2013, Vol. 129, pp. 144–153, DOI: 10.1016/j.rse.2012.10.030.
  14. Klein G., Rebetez M., Rixen C., Vitasse Y., Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming, Intern. J. Biometeorology, 2018, Issue 9, Vol. 62, pp. 1755–1762, DOI: 10.1007/s00484-018-1578-3.
  15. Loranty M. M., Goetz S. J., Shrub expansion and climate feedbacks in Arctic tundra, Environmental Research Letters, 2012, Vol. 7, No. 1, Article 015503, DOI: 10.1088/1748-9326/7/1/011005.
  16. May J. L., Healey N. C., Ahrends H. E. et al., Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats, Remote Sensing, 2017, Vol. 9, No. 12, DOI: 10.3390/rs9121338.
  17. Mod H., Luoto M., Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation, Environmental Research Letters, 2016, Issue 12, Vol. 11, Article 124028, DOI: 10.1088/1748-9326/11/12/124028.
  18. Monthly Global Climate Report for Annual 2022, NOAA National Centers for Environmental Information, 2022, https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213.
  19. Morgenstern A., Ulrich M., Gunther F. et al., Evolution of thermokarst in East Siberian ice-rich permafrost: A case study, Geomorphology, 2013, Vol. 201, pp. 363–379, DOI: 10.1016/j.geomorph.2013.07.011.
  20. Pearson R. G., Phillips S. J., Loranty M. M. et al., Shifts in Arctic vegetation and associated feedbacks under climate change, Nature Climate Change, 2013, Issue 7, Vol. 3, pp. 673–677, DOI: 10.1038/NCLIMATE1858.
  21. Perovich D. K., The Changing Arctic Sea Ice Cover, Oceanography, 2011, Issue 3, Vol. 24, pp. 162–173, DOI: 10.5670/oceanog.2011.68.
  22. Phoenix G. K., Bjerke J. W., Arctic browning: extreme events and trends reversing arctic greening, Global Change Biology, 2016, Issue 9, Vol. 22, pp. 960–2962, DOI: 10.1111/gcb.13261.
  23. Schwamborn G., Rachold V., Grigoriev M. N., Late Quaternary sedimentation history of the Lena Delta, Quaternary Intern., 2002, Issue 1, Vol. 89, pp. 119–134, DOI: 10.1016/S1040-6182(01)00084-2.
  24. Semmens K. A., Ramage J., Bartsch A., Liston G. E., Early snowmelt events: detection, distribution, and significance in a major sub-arctic watershed, Environmental Research Letters, 2013, Vol. 8, 11 p., Article 014020, DOI: 10.1088/1748-9326/8/1/014020.
  25. Vankoughnett M. R., Grogan P., Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: the influence of snow and litter, Plant Soil, 2016, Vol. 408, pp. 195–210, DOI: 10.1007/s11104-016-2921-2.
  26. Vitasse Y., Rebetez M., Filippa G. et al., “Hearing” alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology, Intern. J. Biometeorology, 2016, Issue 2, Vol. 6, pp. 349–361, DOI: 10.1007/s00484-016-1216-x.
  27. Wipf S., Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations, Plant Ecology, 2010, Issue 1, Vol. 207, pp. 53–66, DOI: 10.1007/s11258-009-9653-9.
  28. Zona D., Lafleur P. M., Hufkens K. et al., Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems, Scientific Reports, 2022, Vol. 12, Article 3986, DOI: 10.1038/s41598-022-07561-1.