ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 153-165

Mapping of sor depressions and solonchaks in the Northern Caspian region based on long-term Landsat data

S.S. Shinkarenko 1 , S.А. Bartalev 1, 2 
1 Space Research Institute RAS, Moscow, Russia
2 Kazan Federal University, Kazan, Russia
Accepted: 28.08.2023
DOI: 10.21046/2070-7401-2023-20-5-153-165
Sor depressions (sors) of various origins and hydromorphic solonchaks associated with them are characteristic objects of arid landscapes. In Russia, they are widespread in the southeast of the European part, as well as in the south of Western Siberia and in Transbaikalia. Sors are depressions, at the bottom of which the processes of solonchak formation are actively developing, often there are permanent or drying up salty and brackish water bodies. The surface of salt marshes is practically devoid of vegetation cover, only a few of the most resistant plant species are able to withstand such high levels of salinity. In recent years, in the southeast of the European part of Russia, desertification processes have intensified up to complete disappearance of vegetation and exposure of shifting sands and blowout basins due to droughts and excessive pasture loads. During satellite monitoring of these processes, open sands are often confused with sors and solonchaks, which are devoid of vegetation due to natural causes, and not due to the impact of adverse factors. For this reason, a technology is needed to separate open sands and deflated areas and natural formations — sors and solonchaks. The paper proposes a method for mapping sors based on the average annual values of NDVI and NDWI calculated from Landsat data that have undergone the atmospheric distortion correction procedure. Threshold values of these indices are proposed for separating sors from open sands and permanent reservoirs. As a result, the area of sor depressions and solonchaks amounted to about 245 thousand hectares, which exceeds the area of open sands and deflated territories before the period of intensification of desertification processes in 2019–2022.
Keywords: arid landscapes, remote sensing, sors, solonchaks, southern Russia, Landsat
Full text

References:

  1. Abaturov B. D., Konyushkova M. V., The Post-Khvalyn dynamics of the dry land ecosystemsat the steppe plain in the north of The Caspian Lowland, Uspekhi sovremennoi biologii, 2020, Vol. 140, No. 5, pp. 494–506 (in Russian), DOI: 10.31857/S0042132420050038.
  2. Bartalev S. A., Egorov V. A., Zharko V. O. et al., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian), http://iki.cosmos.ru/books/2016bartalev.pdf.
  3. Berdengalieva A. N., Doroshenko V. V., Spatial Distribution of Sor Depressions in the South of European Russia According to Remote Sensing Data, Nauchno-agronomicheskii zhurnal, 2022, No. 4, pp. 6–11 (in Russian), DOI: 10.34736/FNC.2022.119.4.001.06-11.
  4. Berdengalieva A. N., Shinkarenko S. S., Vypritskii A. A., Geoinformation mapping of sor depression in the Northwestern Caspian, InterKarto. InterGIS, 2022, Vol. 28, Issue 1, pp. 359–367 (in Russian), DOI: 10.35595/2414-9179-2022-1-28-359-367.
  5. Vinogradov B. V., Study of indicators for monitoring desertification in the South of Russia, Aridnye ekosistemy, 1996, Vol. 2, No. 4, pp. 38–54 (in Russian).
  6. Gasanov G. N., Asadulaev Z. M., Asvarova T. A. et al., Ecological Aspects of the Formation of Regraded Solonchak in the Terek-Kuma Lowland of the Caspian., South of Russia: ecology, development, 2019, Vol. 14, No. 4, pp. 86–97 (in Russian), DOI: 10.18470/1992‐1098‐2019‐4‐86‐97.
  7. Gasanova Z. U., Abdurashidova P. A., Dzhalalova M. I., Ecological conditions for the formation of halophytic vegetation in the Kizlyar Bay, Vestnik Dagestanskogo nauchnogo tsentra, 2015, No. 56, pp. 14–19 (in Russian).
  8. Doroshenko V. V., Geoinformation mapping of sorov depressions and salt marshes in The Stavropol territory, Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie, 2022, No. 4(68), pp. 553–561 (in Russian), DOI: 10.32786/2071-9485-2022-04-64.
  9. Lazareva V. G., Bananova V. A., Nguen V. Z., Mapping the vegetation of the plain of the Sarpinsky lowland (Kalmykia) using remote sensing and GIS, Uspekhi sovremennogo estestvoznaniya, 2017, No. 12, pp. 178–183 (in Russian).
  10. Loupian E. A., Proshin A. A., Burtsev M. A. et al., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian), http://d33.infospace.ru/d33_conf/sb2015t5/263%E2%80%93284.pdf.
  11. Pishchulov S. A., Sors: an example of arid landforms, Geomorfologiya, 2013, No. 3, pp. 89–96 (in Russian), DOI: 10.15356/0435-4281-2013-3.
  12. Rulev A. S., Kosheleva O. Yu., Shinkarenko S. S., Geomorphological criteria in agroforestry: Lake Elton area (SE Russian Plain) case study, Geomorfologiya, 2017, No. 2, pp. 63–71 (in Russian), DOI: 10.15356/0435-4281-2017-2-63-71.
  13. Rybashlykova L. P., Belyaev A. I., Pugacheva A. M., Monitoring Successional Changes in Pasture Phytocenoses in ‘Exhausted’ Areas of Deflation in the North-West Caspian Region, South of Russia: ecology, development, 2019, Vol. 14, No. 4, pp. 78–85 (in Russian), DOI: 10.18470/1992-1098-2019-4-78-85.
  14. Stasyuk N. V., Kravtsova V. I., The assessment of the dynamics of the soil cover of The Kizljar coast by a time series of maps and satellite images, Aridnye ekosistemy, 2012, Vol. 18, No. 3(52), pp. 86–94 (in Russian).
  15. Titkova T. B., Zolotokrylin A. N., Monitoring of lands affected by desertification in the Republic of Kalmykia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 130–141 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-130-141
  16. Ulanova S. S., Geoinformation systems in the study of ecotonic territories of the coasts of reservoirs of Kalmykia, Vestnik Kalmytskogo instituta sotsial’no-ekonomicheskikh i pravovykh issledovanii, 2004, Vol. 1, No. 1, pp. 76–78.
  17. Shinkarenko S. S., Spatial-temporal dynamics of desertification in Black Lands, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 155–168 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-155-168.
  18. Shinkarenko S. S., Bartalev S. A. (2020a), Consequences of dust storms in the south of the European part of Russia in September – October 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 270–275 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-270-275.
  19. Shinkarenko S. S., Bartalev S. A. (2020b), NDVI seasonal dynamics of the North Caspian pasture landscapes according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4. pp. 179–194 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-179-194.
  20. Shinkarenko S. S., Bartalev S. A., Assessment of desertification area in the south of the European part of Russia in 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 291–297 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-291-297.
  21. Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Vypritskii A. A., Dynamics of water bodies areas in the Western Ilmen Lake Region of the Volga Delta, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 285–290 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-285-290.
  22. Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Doroshenko V. V., Satellite monitoring of desertification processes in the south of European Russia in 2019–2022, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 319–327 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-319-327.
  23. Chen B., Xu B., Zhu Z. et al., Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017, Science Bull., 2019, Vol. 64, pp. 370–373, DOI: 10.1016/j.scib.2019.03.002.
  24. Chen J., Ban Y., Li S., China: Open access to Earth land-cover map, Nature, 2014, Vol. 514(7523), Article 434. DOI: 10.1038/514434c.
  25. Gunin P. D., Danzhalova E. V., Bazha S. N. et al., NDVI for Monitoring of the State of Steppe and Desert Ecosystems of the Gobi, Arid Ecosystems, 2019, Vol. 9, No. 3, pp. 179–186, DOI: 10.1134/S207909611903003X.
  26. Karra K., Kontgis C, Statman-Weil Z. et al., Global land use/land cover with Sentinel-2 and deep learning, 2021 IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2021, pp. 4704–4707, DOI: 10.1109/IGARSS47720.2021.9553499.
  27. Kulik K. N., Rulev A. S., Yuferev V. G., Geoinformation analysis of desertification dynamics in the territory of Astrakhan oblast, Arid Ecosystems, 2015, Vol. 5, No. 3, pp. 134–141, DOI: 10.1134/S2079096115030087.
  28. Kulik K. N., Petrov V. I., Yuferev V. G., Tkachenko N. A., Shinkarenko S. S., Geoinformational Analysis of Desertification of the Northwestern Caspian, Arid Ecosystems, 2020, Vol. 10, No. 2, pp. 98–105, DOI: 10.1134/S2079096120020080.
  29. Loupian E. A., Bourtsev M. A., Proshin A. A. et al., Usage Experience and Capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14, No. 1, Article 77, DOI: 10.3390/rs14010077.
  30. McFeeters S. K., The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Intern. J. Remote Sensing, 1996, Vol. 17, No. 7, pp. 1425–1432, DOI: 10.1080/01431169608948714.
  31. Shadrina M. B., Bykov A. V., Kolesnikova A. V., Shabanova N. P., Spatial functional organization of ecotones on shores of intermittent lake Bulukhta (North Caspian lowland), Arid Ecosystems, 2013, Vol. 3, No. 4, pp. 244–249, DOI: 10.1134/S2079096113040094.
  32. Zanaga D., Van De Kerchove R., De Keersmaecker W. et al., ESA WorldCover 10 m 2020 v100, 2021, DOI: 10.5281/zenodo.5571936.
  33. Zolotokrylin A. N., Titkova T. B., A new approach to the monitoring of desertification centers, Arid Ecosystems, 2011, Vol. 1, No. 3, pp. 125–140, DOI: 10.1134/S2079096111030127.
  34. Zonn I. S., Kust G. S., Andreeva O. V., Desertification paradigm: 40 years of development and global efforts, Arid Ecosystems, 2017, Vol. 7, No. 3, pp. 131–141, DOI: 10.1134/S2079096117030118.