ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 176-193

Monitoring and prediction of land cover dynamics in the Middle Volga using satellite data with QGIS MOLUSCE

O.N. Vorobyev 1 , E.A. Kurbanov 1 , J. Sha 2 , S.A. Lezhnin 1 , J. Wang 3 , D.M. Dergunov 1 
1 Volga State University of Technology, Yoshkar-Ola, Russia
2 College of Geography, Fujian Normal University, Fuzhou, China
3 Faculty of Geography, Yunnan Normal University, Kunming, China
Accepted: 26.09.2023
DOI: 10.21046/2070-7401-2023-20-5-176-193
Operational remote monitoring and land cover models are essential components for decision making on how to manage territories in a sustainable way. In this research, a predictive analysis of the spatio-temporal dynamics for seven land cover classes in the Middle Volga region was carried out until 2041 with the use of local thematic maps and Landsat images acquired in 2001–2021. The dynamics of these classes were modelled using the cellular automata and artificial neural network (CA-ANN) methods with the MOLUSCE (Modules for Land-Use Change Simulation) plugin in the Quantum GIS software, subject to the trends in land and forest management over the past 20 years, as well as natural disturbances in the study region. The intensity and probability of spatio-temporal transitions between the examined classes of land cover have been analysed over the simulated time period. As a result, a set of thematic maps was created in ArcGIS and matrices for the transition probability and intensity of changes in the land cover of the Middle Volga region. The predictive spatiotemporal analysis made it possible to determine future trends in dynamics of land cover until 2041. The research findings indicate that the majority of the land cover classes will have changes in area between 2021–2041. This will have an impact on the areas of the Russian Federation located in the Middle Volga region, particularly Republic of Mari El, Kirov and Nizhny Novgorod Regions, all of which have extensive forested areas. According to the predictive analysis, the study area’s forest cover might increase by 23.8 % between 2001 and 2041. The “young forest” class, whose annual increase in area may equal 1.6 % each year, serves as a good example of the maximum intensity of changes until 2041. As much as 0.31 million hectares of coniferous plantations can be converted to mixed forest, while 0.357 million hectares of coniferous plantations can be converted to deciduous forest. The findings may be used in predictive monitoring of land cover using satellite images, taking into account other variables such as changing climate and socioeconomic activities at the regional and local levels.
Keywords: LUCC, CA-ANN, Middle Volga, forest cover, Landsat, MOLUSCE
Full text

References:

  1. Ali M. S., Lezhnin S. A., Vorob’ev O. N., Kurbanov E. A., Vegetation monitoring of Latakia Governorate, Syrian Arab Republic, based on Landsat images Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo univepsiteta. Ser.: Les. Ehkologiya. Prirodopol’zovanie, 2020, No. 3, pp. 19–31 (in Russian), DOI: 10.25686/2306-2827.2020.3.19.
  2. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Current state and development prospects of satellite mapping methods of Russia’s vegetation cover, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 203–221 (in Russian).
  3. Bartalev S. A., Stytsenko F. V., Khvostikov S. A., Loupian E. A., Methodology of post-fire tree mortality monitoring and prediction using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 176–193 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-176-193.
  4. Vanag V. K., Investigation of spatially distributed dynamical systems by methods of probabilistic cellular automaton, Uspekhi fizicheskikh nauk, 1999, Vol. 169, No. 5, pp. 481–505 (in Russian).
  5. Vorob’ev O. N., Kurbanov E. A., Remote monitoring of vegetation regeneration dynamics on burnt areas of Mari Zavolzhje forests, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 124–134 (in Russian), DOI: 10.21046/2070-7401-2017-14-2-84-97.
  6. Vorob’ev O. N., Kurbanov E. A., Polevshchikova Yu. A., Lezhnin S. A., Prostranstvenno-vremennoi analiz dinamiki lesnogo pokrova v Srednem Povolzh’e po sputnikovym dannym: monografiya (Spatio-temporal analysis of forest cover dynamics in middle Volga region on the base of satellite data: monograph), Yoshkar-Ola: Povolzhskii gosudarstvennyi tekhnologicheskii universitet, 2019, 200 p. (in Russian).
  7. Vorob’ev O. N., Kurbanov E. A., Sha Dzh. et al., Trend analysis of MODIS time series vegetation indices to assess the impact of droughts on forest stands in the Middle Volga from 2000 to 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 181–194 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-181-194.
  8. Danilova I. V., Korets M. A., Ryzhkova V. A., Mapping the age stages of forest vegetation based on the analysis of different-season Landsat satellite images, Issledovanie Zemli iz kosmosa, 2017, No. 4, pp. 12–24 (in Russian), DOI: 10.7868/S0205961417040029.
  9. Elsakov V. V., Shchanov V. M., Current changes in vegetation cover of Timan tundra reindeer pastures from analysis of satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 128–142 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-128-142.
  10. Ershov D. V., Burtseva V. S., Gavrilyuk E. A. et al., Recognizing the recent succession stage of forest ecosystems in Pechora-Ilych Nature reserve with thematic satellite products, Lesovedenie, 2017, No. 5, pp. 3–15 (in Russian), DOI: 10.7868/S0024114817050011.
  11. Zharko V. O., Bartalev S. A., Egorov V. A., Investigation of forest growing stock volume estimation possibilities over Russian Primorsky Krai region using Proba-V satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 157–168 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-157-168.
  12. Zhirin V. M., Knyazeva S. V., Ehidlina S. P., Ecological and dynamic study of the forest formation process based on satellite images, Lesovedenie, 2013, No. 5, pp. 76–85 (in Russian).
  13. Zuev V. V., Korotkova E. M., Pavlinskii A. V., Climate-related changes in the vegetation cover of the taiga and tundra of Western Siberia in 1982–2015 according to satellite observations, Issledovanie Zemli iz kosmosa, 2019, No. 6, pp. 66–76 (in Russian), DOI: 10.31857/S0205-96142019666-76.
  14. Kovyazin V. F., Dang T. L. A., Dang V. Kh., Predicting forest land cover changes of Dong Nai reserve, Vietnam, Vestnik Sibirskogo gosudarstvennogo universiteta geosistem i tekhnologii, 2020, Vol. 25, No. 3, pp. 214–228 (in Russian), DOI: 10.33764/2411-1759-2020-25-3-214-228.
  15. Korovin G. N., Korzukhin M. D., Butusov O. B., Golovanov A. S., Long-term forecasting of dynamics of forest species-age structure, Lesovedenie, 2011, No. 6. pp. 94–109 (in Russian).
  16. Kurbanov E. A., Vorob’ev O. N., Distantsionnye metody v lesnom khozyaistve: uchebnoe posobie (Remote sensing in forestry: textbook), Yoshkar-Ola: Povolzhskii gosudarstvennyi tekhnologicheskii universitet, 2020, 266 p. (in Russian).
  17. Kurbanov E. A., Vorob’ev O. N., Retrospective analysis of vegetation cover loss in Republics of Mari El and Chuvashia after flooding of Cheboksarskaya dam from Landsat/MSS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 127‒137 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-127-137.
  18. Kurbanov E. A., Vorob’ev O. N., Gubaev A. V., Lezhnin S. A., Nezamaev S. A., Aleksandrova T. A., Estimation of reforestation on abandoned agricultural lands in Republic Mari El by satellite images, Vestnik Mariiskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Les. Ehkologiya. Prirodopol’zovanie, 2010, No. 2, pp. 14–20 (in Russian).
  19. Kurbanov E. A., Vorob’ev O. N., Lezhnin S. A., Gubaev A. V., Polevshchikova Yu. A., Tematicheskoe kartirovanie rastitel’nogo pokrova po sputnikovym snimkam: validatsiya i otsenka tochnosti: monografiya (Thematic mapping of vegetation cover with the use of satellite images: validation and accuracy assessment), Yoshkar-Ola: PGTU, 2015, 131 p. (in Russian).
  20. Miklashevich T. S., Bartalev S. A., Plotnikov D. E., Interpolation algorithm for the recovery of long satellite data time series of vegetation cover observation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 143–154 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-143-154.
  21. Sochilova E. N., Surkov N. V., Ershov D. V. et al., Mapping of forest site index classes in Primorskiy Krai based on satellite images and terrain characteristics, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5. pp. 96–109 (in Russian). DOI: 10.21046/2070-7401-2018-15-5-96-109.
  22. Terekhin E. A., Spatial analysis of tree vegetation of abandoned arable lands using their spectral response in forest-steppe zone of Central Chernozem Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 142–156 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-142-156.
  23. Terekhin E. A., Chendev Yu. G., Estimation of forest cover changes during modern period in the south of the Central Russian Upland using multiyear remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 114–126 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-114-126.
  24. Terekhov A. G., Vitkovskaya I. S., Abaev N. N., Dolgikh S. A., Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 data (2002–2019), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-133-142.
  25. Fedorchuk V. N., Shorokhov A. A., Shorokhova E. V., Kuznetsova M. L., Dynamics of primary spruce forests in European Russia, Lesovedenie, 2014, No. 2, pp. 11–19 (in Russian).
  26. Abbas Z., Yang G., Yuanjun Zhong Y., Zhao Y., Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: a case study of the Greater Bay area, China, Land, 2021, Vol. 10, Issue 6, Articel 584, DOI: 10.3390/land10060584.
  27. Akbar T. A., Hassan Q. K., Ishaq S. et al., Investigative spatial distribution and modelling of existing and future urban land changes and its impact on urbanization and economy, Remote Sensing, 2019, Vol. 11, No. 2, Article 105, DOI: 10.3390/rs11020105.
  28. Aldwaik S. Z., Pontius R. G. J., Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition, Landscape Urban planning, 2012, Vol. 106, pp. 103–114, DOI: 10.1016/j.landurbplan.2012.02.010.
  29. Barredo J. I., Kasanko M., McCormick N., Lavalle C., Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata, Landscape and urban planning, 2003, Vol. 64, Issue 3, pp. 145–160, DOI: 10.1016/S0169-2046(02)00218-9.
  30. Cong X., Du S., Li F., Ding Y., Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments, Ecological Indicators, 2021, No. 131, Article 108198, DOI: 10.1016/j.ecolind.2021.108198.
  31. Decuyper M., Chavez R. O., Lohbeck M. et al., Continuous monitoring of forest change dynamics with satellite time series, Remote Sensing of Environment, 2022, Vol. 269, Article 112829, DOI: 10.1016/j.rse.2021.112829.
  32. Gharbia S. S., Alfatah S. A., Gill L. et al., Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms, Modelling Earth Systems and Environment, 2016, Vol. 2, Article 151, DOI: 10.1007/s40808-016-0210-y.
  33. Guidigan M. L. G., Sanou C. L., Ragatoa D. S. et al., Assessing land use/land cover dynamic and its impact in Benin republic using land change model and CCI-LC products, Earth Systems and Environment, 2019, Vol. 3, pp. 127–137, DOI: 10.1007/s41748-018-0083-5.
  34. Healey S. P., Healey S. P., Cohen W. B. et al., Comparison of tasseled cap-based Landsat data structures for use in forest disturbance detection, Remote Sensing of Environment, 2005, Vol. 97, Issue 3, pp. 301–310, DOI: 10.1016/j.rse.2005.05.009.
  35. Kumar S., Radhakrishnan N., Mathew S., Land use change modelling using a Markov model and remote sensing, Geomatics, Natural Hazards and Risk, 2013, Vol. 5, Issue 2, pp. 145–156, DOI: 10.1080/19475705.2013.795502.
  36. Kurbanov E., Vorobiev O., Sha J. et al., A survey on the use of GIS and remote sensing for sustainable forestry and ecology in Russia and China, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5. pp. 9–20, DOI: 10.21046/2070-7401-2020-17-5-9-20.
  37. Kurbanov E., Vorobev O., Lezhnin S. et al., Remote sensing of forest burnt area, burn severity, and post-fire recovery: a review, Remote Sensing, 2022, Vol. 14, Issue 19, Article 4714, DOI: 10.3390/rs14194714.
  38. Lai S., El-Adawy A., Sha J. et al., Towards an integrated systematic approach for ecological maintenance: Case studies from China and Russia, Ecological Indicators, 2022, Vol. 140, Article 108982, DOI: 10.1016/j.ecolind.2022.108982.
  39. Losiri C., Nagai M., Ninsawat S., Shrestha R. P., Modeling urban expansion in Bangkok metropolitan region using demographic-economic data through Cellular Automata-Markov Chain and multi-layer Perceptron-Markov Chain models, Sustainability, 2016, Vol. 8, Issue 7, Article 686, DOI: 10.3390/su8070686.
  40. Mas J. F., Kolb M., Paegelow M. et al., Inductive pattern-based land use/cover change models: A comparison of four software packages, Environmental Modelling and Software, 2014, Vol. 51, pp. 94–111, DOI: 10.1016/j.envsoft.2013.09.010.
  41. Moss R., Edmonds J., Hibbard K. et al., The next generation of scenarios for climate change research and assessment, Nature, 2010, Vol. 463, pp. 747–756, DOI: 10.1038/nature08823.
  42. Muhammad R., Zhang W., Abbas Z. et al., Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: a case study of Linyi, China, Land, 2022, Vol. 11, Issue 3, Article 419, DOI: 10.3390/land11030419.
  43. Pahlavani P., Askarian Omran H., Bigdeli B., A multiple land use change model based on artificial neural network, Markov chain, and multi objective land allocation, Earth Observation and Geomatics Engineering, 2017, Vol. 1, No. 2, pp. 82–99, DOI: 10.22059/eoge.2017.220342.1006.
  44. Quan B., Pontius R. G., Song H., Intensity analysis to communicate land change during three time intervals in two regions of Quanzhou City, China, GIScience and Remote Sensing, 2019, Vol. 57, No. 1, pp. 21–36, DOI: 10.1080/15481603.2019.1658420.
  45. Rahman M. T. U., Tabassum F., Rasheduzzaman Md. et al., Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh, Environmental Monitoring Assessment, 2017, Vol. 189, Article 565, DOI: 10.1007/s10661-017-6272-0.
  46. Sang X., Guo Q., Wu X. et al., Intensity and stationarity analysis of land use change based on CART algorithm, Scientific reports, 2019, Vol. 9, Article 12279, DOI: 10.1038/s41598-019-48586-3.
  47. Talukdar S., Singha P., Mahato S. et al., Land-Use Land-Cover classification by machine learning classifiers for satellite observations — a review, Remote Sensing, 2020, Vol. 12, No. 7, Article 1135, DOI: 10.3390/rs12071135.
  48. Wulder M. A., Coops N. C., Roy D. P. et al., Land cover 2.0, International J. Remote Sensing, 2018, Vol. 39, No. 12, pp. 4254–4284, DOI: 10.1080/01431161.2018.1452075.
  49. Yang X., Zheng X. Q., Lv L. N., A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata, Ecological Modelling, 2012, Vol. 233, pp. 11–19, DOI: 10.1016/j.ecolmodel.2012.03.011.
  50. Yatoo S. A., Sahu P., Kalubarme M. H., Kansara B. B., Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India, GeoJournal, 2022, Vol. 87, pp. 765–786, DOI: 10.1007/s10708-020-10274-5.
  51. Zhang Y., Ling F., Wang X. et al. (2021a), Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record, Remote Sensing of Environment, 2021, Vol. 261, Article 112470, DOI: 10.1016/j.rse.2021.112470.
  52. Zhang Y., Yang J., Wang D. et al. (2021b), An Integrated CNN model for reconstructing and predicting land use/cover change: a case study of the Baicheng area, northeast China, Remote Sensing, 2021, Vol. 13, No. 23, Article 4846, DOI: 10.3390/rs13234846.