ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 9-27

Methodology of data processing for individual trees monitoring based on UAV multispectral measurements

A.A. Lamaka 1 
1 A.N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, Belarus
Accepted: 25.08.2023
DOI: 10.21046/2070-7401-2023-20-5-9-27
To date, there is a large number of studies in the field of trees condition monitoring to identify their illness. However, only in a small part of such works researchers set the task of detecting the drying of individual trees at an early stage. This article describes an original approach to monitoring the state of trees based on UAV multispectral camera measurements and subsequent processing of recorded data with specialized new methods. The article describes a new method of geographic data binding using pixel distances between nearby images calculated with the OpenCV library as additional information. This method makes it possible to reduce the average radius of the tree crowns images geographical coordinates spread by 46 % compared with the direct overlay of frames on coordinates formed on the basis of data from global navigation satellite systems, and by 15 % compared with standard software. The paper also describes an approach to semantic image segmentation based on the use of a pre-trained Deep Forest neural network model and additional image analysis of specific vegetation indices using an original algorithm. As a result of this method, the accuracy of tree recognition (F-score) was increased from 75 to 92 %. Together, the described methods form a technique for multispectral images processing for monitoring coniferous plantations condition. This technique allows to analyze the spectral reflectance characteristics of individual trees on the basis of the results of multi-temporal areal measurements.
Keywords: UAV, images, geotagging, key points, semantic segmentation, neural networks, Deep Forest, vegetation indexes
Full text

References:

  1. Aleshko R. A., Alekseeva A. A., Shoshina K. V. et al., Development of the methodology to update the information on a forest area using satellite imagery and small UAVs, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 87–99 (in Russian), DOI: 10.21046/2070-7401-2017-14-5-87-99.
  2. Gonzalez R. C., Woods R. E., Digital Image Processing, 3 rd ed., Prentice Hall, 2008, 976 p.
  3. Dubinin M., Calculating the distance and initial azimuth between two points on a sphere, Geographic Information Systems and Remote Sensing, 2006 (in Russian), https://gis-lab.info/qa/great-circles.html.
  4. Katkouski L. V., Hardware-software system “Calibrovka” for ground-based spectrometry of the underlying surface and atmosphere, 7-i Belorusskii kosmicheskii congress (7th Belarussian Space Congress, Proc.), Minsk, 2017, Vol. 2, pp. 36‒40 (in Russian).
  5. Katkovsky L. V., Siliuk V. A., Belyaev B. I. et al., Detection of drying coniferous forests from aerospace data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 88–102 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-88-102.
  6. Kerchev I. A., Maslov K. A., Markov N. G., Tokareva O. S., Semantic segmentation of damaged fir trees in unmanned aerial vehicle images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 116–126 (in Russia), DOI: 10.21046/2070-7401-2021-18-1-116-126.
  7. Kaehler A., Bradski G., Learning OpenCV 3, Sebastopol, CA: O’Reilly Media, Inc., 2016, Ch. 12–14, 16, pp. 360–445, 493–586.
  8. Lamaka A. A., Considering camera distortion panoramic images forming method for unmanned aerial vehicle multispectral data, J. Belarusian State University. Physics, 2022, Vol. 2, pp. 60–69 (in Russian), DOI: 10.33581/2520-2243-2022-2-60-69.
  9. Lamaka A. A., Ivuts P. V., Gutarau A. V., Shcharbakou M. G., Determination of the spatial resolution of aerial photo systems in a flight experiment, Prikladnye problemy optiki, informatiki, radiofiziki i fiziki kondensirovannogo sostoyaniya (Applied problems of optics, computer science, radiophysics and condensed matter physics), Proc. 7th Intern. Scientific and Practical Conf., Minsk, 2023, pp. 425–427 (in Russian).
  10. Molchanov A. S., Methodology of evaluation of linear permit per pixel of aerophotosystems of military purpose when conducting flight tests, Izvestiya vuzov. Geodesy and Aerophotosurveying, 2018, Vol. 62, No. 4, pp. 390–396 (in Russian), DOI: 10.30533/0536-101X-2018-62-4-390-396.
  11. Portnov A. M., Ivanova N. V., Shashkov M. P., Experience of using the DeepForest neural network to detect trees in a broad-leaved forest, Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics), Proc. Intern. Conf., V. D. Lakhno (ed.), Pushchino: IMPB RAS, 2022, Vol. 9, Paper No. e45, 6 p. (in Russian), DOI: 10.17537/icmbb22.12.
  12. Siliuk V. A., Litvinovich H. S., Bruchkousky I. I. et al., Pícea ábies stress levels classification by spectral features of remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 125–135 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-125-135.
  13. Timofeev M. V., RTK-global positioning system mode for topographic survey of linear objects, Ogarev-Online, 2015, Vol. 65, No. 4 (in Russian), https://cyberleninka.ru/article/n/rtk-rezhim-sistemy-globalnogo-pozitsionirovaniya-pri-topograficheskoy-semke-lineynyh-obektov.
  14. Alahi A., Ortiz R., Vandergheynst P., FREAK: Fast Retina Keypoint, IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 510–517, DOI: 10.1109/CVPR.2012.6247715.
  15. Awad M., Forest mapping: a comparison between hyperspectral and multispectral images and technologies, J. Forestry Research, 2018, No. 29, pp. 1395–1405, DOI: 10.1007/s11676-017-0528-y.
  16. Bannari A., Morin D., Bonn F., Huete A. R., A review of vegetation indices, Remote Sensing Reviews, 1995, Vol. 13, No. 13, pp. 95–120.
  17. Brandtberg T., Walter F., Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis, Machine Vision and Applications, 1998, No. 11, pp. 64–73, DOI: 10.1007/s001380050091.
  18. Chen Q., Gao T., Zhu J. et al., Individual Tree Segmentation and Tree Height Estimation Using Leaf-Off and Leaf-On UAV-LiDAR Data in Dense Deciduous Forests, Remote Sensing, 2022, Vol. 14, Article 2787, DOI: 10.3390/rs14122787.
  19. Comaniciu D., Meer P., Mean Shift Analysis and Applications, IEEE Intern. Conf. Computer Vision, 1999, Vol. 2, Article 1197.
  20. Dainelli R., Toscano P., Di Gennaro S. F., Matese A., Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing — A Systematic Review. Pt. I: A General Framework, Forests, 2021, No. 12, Article 327, DOI: 10.3390/f12030327.
  21. Datt B., A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves, J. Plant Physiology, 1999, No. 154, pp. 30–36, DOI: 10.1016/S0176-1617(99)80314-9.
  22. Ecke S., Dempewolf J., Frey J. et al., UAV-Based Forest Health Monitoring: A Systematic Review, Remote Sensing, 2022, Vol. 14, Article 3205, DOI: 10.3390/rs14133205.
  23. Fassnacht F., Latifi H., Ghosh A. et al., Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality, Remote Sensing of Environment, 2014, Vol. 140, pp. 533–548, DOI: 10.1016/j.rse.2013.09.014.
  24. Guimarães N., Pádua L., Marques P. et al., Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities, Remote Sensing, 2020, Vol. 12, Article 1046, DOI: 10.3390/rs12061046.
  25. Guo Y., Zhang X., Chen S. et al., Integrated UAV-Based Multi-Source Data for Predicting Maize Grain Yield Using Machine Learning Approaches, Remote Sensing, 2022, Vol. 14, Article 6290, DOI: 10.3390/rs14246290.
  26. Haboudane D., Miller J. R., Pattey E. et al., Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sensing of Environment, 2004, Vol. 90, Issue 3, pp. 337–352, DOI: 10.1016/j.rse.2003.12.013.
  27. He J., Lyu D., He L. et al., Combining Object-Oriented and Deep Learning Methods to Estimate Photosynthetic and Non-Photosynthetic Vegetation Cover in the Desert from Unmanned Aerial Vehicle Images with Consideration of Shadows, Remote Sensing, 2023, Vol. 15, Article 105, DOI: 10.3390/rs15010105.
  28. Hunt Jr. E. R., Daughtry C. S. T., Eitel J. U. H., Long D. S., Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index, Agronomy J., 2011, Vol. 103, pp. 1090–1099, DOI: 10.2134/agronj2010.0395.
  29. Kislov D. E., Korznikov K. A., Altman J. et al., Extending deep learning approaches for forest disturbance segmentation on very high-resolution satellite images, Remote Sensing in Ecology and Conservation, 2021, Vol. 7, No. 3, pp. 355–368, DOI: 10.1002/rse2.194.
  30. Korznikov K. A., Kislov D. E., Altman J. et al., Using U-Net-Like Deep Convolutional Neural Networks for Precise Tree Recognition in Very High Resolution RGB (Red, Green, Blue) Satellite Images, Forests, 2021, Vol. 12, Article 66, DOI: 10.3390/f12010066.
  31. Lamaka A. A., Gutarau A. V., Shcherbakou N. G., Ivuts P. V., Photospectral Data Obtaining with the Unmanned Aerial Spectrometry Vehicle, Devices and Methods of Measurements, 2023, Vol. 14, No. 1, pp. 7–17, DOI: 10.21122/2220-9506-2023-14-1-7-17.
  32. Lausch A., Heurich M., Gordalla D. et al., Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales, Forest Ecology and Management, 2013, Vol. 308, pp. 76–89, DOI: 10.1016/j.foreco.2013.07.043.
  33. Mohan M., Silva C. A., Klauberg C. et al., Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest, Forests, 2017, Vol. 8, Article 340, DOI: 10.3390/f8090340.
  34. Otsu N. A., Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Systems, Man, and Cybernetics, 1979, Vol. 9, No. 1, pp. 62–66.
  35. Rublee E., Rabaud V., Konolige K., Bradski G., ORB: An efficient alternative to SIFT or SURF, Intern. Conf. Computer Vision, 2011, pp. 2564–2571, DOI: 10.1109/ICCV.2011.6126544.
  36. Shamaoma H., Chirwa P. W., Ramoelo A. et al., The Application of UASs in Forest Management and Monitoring: Challenges and Opportunities for Use in the Miombo Woodland, Forests, 2022, Vol. 13, Article 1812, DOI: 10.3390/f13111812.
  37. Sokolova M., Japkowicz N., Szpakowicz S., Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation, AI 2006: Advances in Artificial Intelligence. Lecture Notes in Computer Science, Sattar A., Kang B (eds.), Berlin; Heidelberg: Springer, 2006, Vol. 4304, pp. 1015–1021, DOI: 10.1007/11941439_1.
  38. Takhtkeshha N., Mohammadzadeh A., Salehi B., A Rapid Self-Supervised Deep-Learning-Based Method for Post-Earthquake Damage Detection Using UAV Data (Case Study: Sarpol-e Zahab, Iran), Remote Sensing, 2023, Vol. 15, Article 123, DOI: 10.3390/rs15010123.
  39. Torres P., Rodes-Blanco M., Viana-Soto A. et al. The Role of Remote Sensing for the Assessment and Monitoring of Forest Health: A Systematic Evidence Synthesis, Forests, 2021, Vol. 12, Article 1134, DOI: 10.3390/f12081134.
  40. Weinstein B. G., Marconi S., Bohlman S. et al., Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks, Remote Sensing, 2019, Vol. 11, Article 1309, DOI: 10.3390/rs11111309.