ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 130-139

Application of a terrestrial scanning laser in the study of annual and interannual variability of thermokarst in Central Yakutia

V.M. Lytkin 1, 2 , N.I. Basharin 1, 2 , A.F. Zhirkov 1 , A.R. Kirillin 1 , M.A. Sivtsev 1, 2 
1 Melnikov Permafrost Institute SB RAS, Yakutsk, Russia
2 The Institute for Humanities Research and Indigenous Studies of the North SB RAS, Yakutsk, Russia
Accepted: 18.09.2023
DOI: 10.21046/2070-7401-2023-20-5-130-139
The ongoing changes in climatic parameters influence the temperature regime of near-surface permafrost, leading to the development of hazardous surficial processes such as enhanced thermokarst activity in ice-rich permafrost terrain. Changes in the landscape can have adverse impacts on local communities in the Arctic. Understanding thermokarst development patterns is therefore critical. This article presents the results of terrestrial laser scanning (TLS) for investigating the annual and interannual dynamics of thermokarst at a key study site near the village of Chapchylgan, Amga District, Republic of Sakha (Yakutia). The data derived from the point clouds with 1.2 cm/pixel resolution indicate that the surface of the study area covered by bylars (incipient thermokarst forms) has been settling at an average rate of 6.7 cm per year. Subsidence rates can be as high as 20 cm per year where the surface is covered by meltwater in spring. The TLS data were verified by a leveling survey at 19 points which showed an absolute error of 32 % for the annual observation cycle. In addition to surface subsidence, TLS can be used to obtain data on volume of thawed ground ice, depth of inter-bylar depressions and a digital terrain model in 1 cm resolution.
Keywords: thermokarst, terrestrial laser scanning, permafrost, permafrost degradation, ice complex, remote sensing
Full text


  1. Soloviev P. A., Kriolitozona severnoi chasti Leno-Amginskogo mezhdurech’ya (Permafrost Zone of the Northern part of the Lena-Amga Interfluve), Moscow: Izd. AN SSSR, 1959, 143 p. (in Russian).
  2. Anisimov O., Reneva S., Permafrost and changing climate: The Russian perspective, AMBIO, 2006, Vol. 35, No. 4, pp. 169–175.
  3. Biskaborn B. K., Smith S. L., Noetzli J. et al., Permafrost is warming at a global scale, Nature Communications, 2019, Vol. 10, pp. 2041–2723, DOI: 10.1038/s41467-018-08240-4.
  4. Calders K., Disney M. I., Armston J. et al., Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 2716–2724, DOI: 10.1109/TGRS.2017.2652721.
  5. Dixon J. C., Response of Periglacial Geomorphic Processes to Global Change, Treatise on Geomorphology, 2nd ed., 2022, Vol. 9, pp. 440–457, DOI: 10.1016/B978-0-12-818234-5.00012-2.
  6. Fedorov A. N., Gavriliev P. P., Konstantinov P. Y. et al., Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia, Ecohydrology, 2014, Vol. 7, No. 2, pp. 188–196, DOI: 10.1002/eco.1378.
  7. Fedorov A. N., Vasilyev N. F., Torgovkin Y. I. et al., Permafrost-Landscape Map of the Republic of Sakha (Yakutia) on a Scale 1:1 500 000, Geosciences, 2018, Vol. 8, Article 465, DOI: 10.3390/geosciences8120465.
  8. Fischer L., Kääb A., Huggel C., Noetzli J., Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nature Hazards Earth System Sciences, 2006, No. 6, pp. 761–772, DOI: 10.5194/nhess-6-761-2006.
  9. Günther F., Overduin P. P., Sandakov A. V. et al., Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region, Biogeosciences, 2013, Vol. 10, pp. 4297–4318, DOI: 10.5194/bg-10-4297-2013.
  10. Jin H., Wu Q., Romanovsky V. E., Editorial: Degrading permafrost and its impacts, Advances in Climate Change Research, 2021, Vol. 12, No. 1, pp. 1–5, DOI: 10.1016/j.accre.2021.01.007.
  11. Jorgenson M., Thermokarst terrains, Treatise on Geomorphology, 2013, pp. 313–324, DOI: 10.1016/B978-0-12-374739-6.00215-3.
  12. Kokelj S. V., Jorgenson M. T., Advances in thermokarst research, Permafrost and Periglacial Processes, 2013, Vol. 24, No. 2, pp. 108–119, DOI: 10.1002/ppp.1779.
  13. Konishchev V. N., Permafrost response to climate warming, Earth’s Cryosphere, 2011, Vol. 15. No. 4, pp. 15–18.
  14. Lewkowicz A. G., Way R. G., Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment, Nature Communications, 2019, Vol. 10, Article 1329, DOI: 10.1038/s41467-019-09314-7.
  15. Liljedahl A., Boike J., Daanen R. et al., Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geoscience, 2016, Vol. 9, pp. 312–318, DOI: 10.1038/ngeo2674.
  16. Lytkin V., Suleymanov A., Vinokurova L. et al., Influence of permafrost landscapes degradation on livelihoods of Sakha Republic (Yakutia) rural communities, Land, 2021, Vol. 10, No. 2, Article 101, DOI: 10.3390/land10020101.
  17. Morgenstern A., Overduin P. P., Günther F. et al., Thermo-erosional valleys in Siberian ice-rich permafrost, Permafrost and Periglacial Processes, 2021, Vol. 32, No. 1, pp. 59–75, DOI: 10.1002/ppp.2087.
  18. Osterkamp T. E., Jorgenson M. T., Schuur E. A. G. et al., Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska, Permafrost Periglacial Processes, 2009, Vol. 20, No. 3, pp. 235–256, DOI: 10.1002/ppp.656.
  19. Rowland J. C., Jones C. E., Altmann G. et al., Arctic landscapes in transition: responses to thawing permafrost, EOS, Trans. American Geophysical Union, 2010, Vol. 91, No. 26, pp. 229–230, DOI: 10.1029/2010EO260001.
  20. Runge A., Nitze I., Grosse G., Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr, Remote Sensing of Environment, 2022, Vol. 268, Article 112752, DOI: 10.1016/j.rse.2021.112752.
  21. Saito H., Iijima Y., Basharin N. I. et al., Thermokarst development detected from high-definition topographic data in Central Yakutia, Remote Sensing, 2018, Vol. 10, No. 10, Article 1579, DOI: 10.3390/rs10101579.
  22. Shestakova A. A., Fedorov A. N., Torgovkin Y. I. et al., Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS, Land, 2021, Vol. 10, No. 5, Article 462, DOI: 10.3390/land10050462.
  23. Smith S. L., O’Neill H. B., Isaksen K. et al., The changing thermal state of permafrost, Nature Reviews Earth Environment, 2022, Vol. 3, pp. 10–23, DOI: 10.1038/s43017-021-00240-1.
  24. Soudarissanane S., Lindenbergh R., Menenti M., Teunissen P., Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points, ISPRS J. Photogrammetry and Remote Sensing, 2011, Vol. 66, pp. 389–399, DOI: 10.1016/j.isprsjprs.2011.01.005.
  25. Streletskiy D. A., Suter L. J., Shiklomanov N. I. et al., Assessment of climate change impacts on buildings, structures and infrastructure in the russian regions on permafrost, Environmental Research Letters, 2019, Vol. 14, No. 2, Article 25003, DOI: 10.1088/1748-9326/aaf5e6.
  26. Tananaev N., Lotsari E., Defrosting northern catchments: Fluvial effects of permafrost degradation, Earth-Science Reviews, 2022, Vol. 228, Article 103996, DOI: 10.1016/j.earscirev.2022.103996.
  27. Veremeeva A., Nitze I., Günther F. et al., Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma lowland yedoma region, North-Eastern Siberia, Remote Sensing, 2021, Vol. 13, No. 2, Article 178, DOI: 10.3390/rs13020178.
  28. Zhirkov A., Sivtsev M., Lytkin V. et al., An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia, Land, 2023, Vol. 12, No. 1, Article 197, DOI: 10.3390/land12010197.