Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 307-316
The circulation structures in the polar stratosphere of the Northern Hemisphere during the 2019–2021 winters
D.S. Khabituev
1 , B.G. Shpynev
1 1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 18.09.2023
DOI: 10.21046/2070-7401-2023-20-5-307-316
This work is devoted to the study of the upper stratosphere circulation features in quiet and disturbed periods. A comparative analysis of blocking properties of the polar stratospheric vortex during December and January 2019–2021 is carried out. ERA5 reanalysis data and Aura-MLS satellite data are used. To determine the inner boundary of the polar vortex, the method of launching test particles in a three-dimensional field of wind speed values is used, forcing the particles to form closed circulation structures. The focus of this work is to determine the differences in the dynamics of the stratospheric vortex under quiet and disturbed conditions. It is shown that during the development of the main phase of a sudden stratospheric warming similar to the one occurred in January 2021, the circulation structure of the vortex is destroyed. This vortex disruption contributes to significant “meridional” mixing of the polar stratosphere. Estimates of average vertical velocity of movement of the test particles are made.
Keywords: polar stratospheric vortex, sudden stratospheric warming, Lagrangian coherent structures
Full textReferences:
- Vargin P. N., Volodin E. M., Karpechko A. Yu., Pogoreltsev A. I., Stratosphere troposphere interactions, Herald of the Russian Academy of Sciences, 2015, Vol. 85, No. 1, pp. 56–63, DOI: 10.1134/S1019331615010074.
- Vargin P. N., Lukyanov A. N., Vyzankin A. S., Guryanov V. V., Dynamic processes of the arctic stratosphere in the 2020–2021 winter, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 6, pp. 568–580, DOI: 10.1134/S0001433821060098.
- Zuev V. V., Savelieva E. S., Pavlinsky A. V., Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009, Arctic and Antarctic Research, 2021, Vol. 67, No. 2, pp. 134–146 (in Russian), https://doi.org/10.30758/0555-2648-2021-67-2-134-146.
- Mordvinov V. I., Latysheva I. V., Teoriya obshchei tsirkulyatsii atmosfery, izmenchivost’ krupnomasshtabnykh dvizhenii (Theory of general atmospheric circulation, variability of large-scale movements), Irkutsk: Izd. IGU, 2013, 193 p. (in Russian).
- Savelieva E. S., Dynamics of the Antarctic polar vortex during the 2002 sudden stratospheric warming, Optika atmosfery i okeana, 2020, Vol. 33, No. 1, pp. 50–55 (in Russian), DOI: 10.15372/AOO20200107.
- Baldwin M. P., Dunkerton T. J., Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophysical Research, 1999, Vol. 104, pp. 30937–30946.
- Baldwin M. P., O’Sullivan D., Stratospheric effects of ENSO-related tropospheric circulation anomalies, J. Climate, 1995, Vol. 4, pp. 649–667.
- Baldwin M. P., Hirooka T., O’Neil A., Yoden S., Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split, SPARC Newsletter, 2003, Vol. 20, pp. 24–26.
- Bowman K., Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds, J. Geophysical Research, 1993, Vol. 98, pp. 23013–23027, DOI: 10.1029/93JD02599.
- Brasseur G., Solomon S., Aeronomy of the Middle Atmosphere, Springer, 2005, 646 p.
- Butchart N., The Brewer-Dobson circulation, Reviews of Geophysics, 2014, Vol. 52, pp. 157–184, DOI: 10.1002/2013RG000448.
- Douville H., Stratospheric polar vortex influence on Northern Hemisphere winter climate variability, Geophysical Research Letters, 2009, Vol. 36, No. 18, Article L18703, DOI: 10.1029/2009GL039334.
- Goncharenko L. P., Chau J. L., Liu H.-L., Coster A. J., Unexpected connections between the stratosphere and ionosphere, Geophysical Research Letters, 2010, Vol. 37, No. 10, Article L10101, DOI: 10.1029/2010GL043125.
- Harvey V. L., Randall C. E., Bailey S. M. et al., Improving ionospheric predictability requires accurate simulation of the mesospheric polar vortex, Frontiers in Astronomy and Space Sciences, 2022, Vol. 9, DOI: 10.3389/fspas.2022.1041426.
- Hersbach H., Bell B., Berrisford P. et al., The ERA5 global reanalysis., Quarterly J. Royal Meteorological Society, 2020, Vol. 146, pp. 1999–2049, DOI: 10.1002/qj.3803.
- Jadin E. A., Stratospheric “wave hole” and interannual variations of the stratospheric circulation in late winter, Natural Science, 2011, Vol. 3, No. 4, pp. 259–267, DOI: 10.4236/ns.2011.34033
- Klimenko M. V., Klimenko V. V., Koren’kov Yu. N. et al., Modeling of response of the thermosphere-ionosphere system to sudden stratospheric warmings of years 2008 and 2009, Cosmic Research, 2013, Vol. 51, No. 1, pp. 54–63, DOI: 10.1134/S001095251301005X.
- Pancheva D., Mukhtarov P., Stratospheric warmings: The atmosphere – ionosphere coupling paradigm, J. Atmospheric and Solar-Terrestrial Physics, 2011, Vol. 73, No. 113, pp. 1697–1702, DOI: 10.1016/j.jastp.2011.03.006.
- Pedatella N., Ionospheric variability during the 2020–2021 SSW: COSMIC-2 observations and WACCM-X simulations, Atmosphere, 2022, Vol. 13, No. 3, Article 368, DOI: 10.3390/atmos13030368.
- Pertsev N., Dalin P., Lunar semimonthly signal in cloudiness: lunar-phase or lunar-declination effect? J. Atmospheric and Solar-Terrestrial Physics, 2010, Vol. 72, pp. 713–717, DOI: 10.1016/j.jastp.2010.03.013.
- Petkov B., Vitale V., Di Carlo P. et al., The 2020 Arctic ozone depletion and signs of its effect on the ozone column at lower latitudes, Bull. Atmospheric Science and Technology, 2021, Vol. 2, Article 8, DOI: 10.1007/s42865-021-00040-x.
- Serra M., Sathe P., Beron-Vera F., Haller G., Uncovering the Edge of the Polar Vortex, J. Atmospheric Sciences, 2017, Vol. 74, No. 11, pp. 3871–3885, DOI: 10.1175/JAS-D-17-0052.1.
- Shpynev B. G., Churilov S. M., Chernigovskaya M. A., Generation of waves by jet stream instabilities in winter polar stratosphere/mesosphere, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 201–215, DOI: 10.1016/j.jastp.2015.07.005.
- Shpynev B. G., Khabituev D. S., Chernigovskaya M. A., Zorkaltseva O. S., Role of winter jet stream in the middle atmosphere energy balance, J. Atmospheric and Solar-Terrestrial Physics, 2019, Vol. 188, pp. 1–10, DOI: 10.1016/j.jastp.2019.03.008.
- Smith M. L., McDonald A. J., A quantitative measure of polar vortex strength using the function M, J. Geophysical Research: Atmospheres, 2014, Vol. 119(10), pp. 5966–5985, DOI: 10.1002/2013JD020572.
- Waters J. W., Froidevaux L., Harwood R. S. et al., The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite., IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, pp. 1075–1092, DOI: 10.1109/TGRS.2006.873771.
- Waugh D. W., Polvani L. M., Stratospheric polar vortices, The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Ser., 2010, Vol. 190, pp. 43–57, https://doi.org/10.1029/GM190.
- Yasyukevich A. S., Chernigovskaya M. A., Shpynev B. G. et al., Features of Winter Stratosphere Small-Scale Disturbance during Sudden Stratospheric Warmings, Remote Sensing, 2022, Vol. 14, Article 2798, DOI: 10.3390/rs14122798.