ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 187-201

Methods of using multispectral images in ecological monitoring of reclaimed lands

D.A. Shapovalov 1 , L.A. Vedeshin 2 , L.G. Evstratova 1 , A.A. Antoshkin 2 
1 State University of Land Use Planning, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 21.08.2023
DOI: 10.21046/2070-7401-2023-20-4-187-201
Global climate change makes it necessary to create an agricultural production system adapted to this process in the long term. Many years of experience and the results of studies carried out in the Russian Federation show that it is possible to ensure the further development of the agro-industrial complex only on the basis of the widespread implementation of the results of scientific research and world experience in the effective use of irrigated and drained reclaimed lands. Unfortunately, in many regions of Russia there is a steady downward trend in the use of the reclamation complex. The reorganization of large state irrigation systems in the 1990s led to the formation of new scattered farms on their territory. In accordance with the Decree of the Government of the Russian Federation “On the State Program for the Effective Engagement of Agricultural Land in the Turnover and the Development of the Ameliorative Complex of the Russian Federation in 2022–2031,” the agro-industrial complex is working to introduce technologies for remote sensing of the Earth and digital cartographic data in order to restore the reclamation complex in different regions of the country. As a result, it is planned to bring into circulation 13.2 million hectares of unused land and keep reclaimed soils in agricultural circulation on an area of at least 3.6 million hectares. In addition, it is planned to improve the condition of 2.8 million hectares of soil with the help of special substances - chemical ameliorants. As part of this program, it is also planned to collect up-to-date ground and aerospace information on the state of agricultural land and conduct agrochemical research and cadastral work. The article summarizes the lands ecological monitoring experience of using multispectral images based on literature data and the results of its own research in order to use it for the Russia reclamation complex development.
Keywords: ecological monitoring, reclaimed land, remote sensing methods, index images
Full text

References:

  1. Abrosimov A. V., Dvorkin B. A., Perspective application of remote sensing data for agricultural efficiency enhancement in Russia, Geomatica, 2009, No. 4, pp. 45–49 (in Russian).
  2. Akopov A. K., Baula G. G., Krivoshein V. V., Krotkov A.Yu., Tretiakov V. A., The development of methodology for ground validation measurements of range of crop, Kosmonavtika i raketostroenie, 2015, No. 6 (85), pp. 45–50 (in Russian).
  3. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  4. Blokhin Yu. I., Belov A. V., Blokhina S. Yu., Integrated system for monitoring soil moisture and local weather conditions for remote sensing data interpretation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87–95 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-87-95.
  5. Vedeshin L. A., Shapovalov D. A., First scientific and technical experiments in space geography (On the occasion of the 60th anniversary of the start of work on space photography of the Earth from manned spacecraft), Issledovanie Zemli iz kosmosa, 2022, No. 5, pp. 99–102 (in Russian), DOI: 10.31857/S0205961422050086.
  6. Vedeshin L. A., Shapovalov D. A., Belorustseva E. V., Space information technology for the decision of agricultural problems, Ecological Systems and Devices, 2011, No. 9, pp. 3–10 (in Russian).
  7. Vinogradov B. V., Kondratiev K. Ya., Kosmicheskie metody zemlevedeniya (Space methods of geography), Leningrad: Hydrometeorological Publ. House, 1971, 190 p. (in Russian).
  8. Gabbasova I. M., Degradatsiya i rekul’tivatsiya pochv Yuzhnogo Priural’ya. Avtoref. diss. dokt. biol. nauk (Degradation and recultivation of soils of the Southern Urals: Ext. abstract Dr. biol. sci. thesis), Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, Moscow, 2001, 48 p. (in Russian).
  9. Golovinov E. E., Borodychev V. V., Lytov M. N., Kiselev S. A., Monitoring irrigation and drainage systems from satellite imagery from public sources, Izvestia of the Lower Volga Agro-University Complex, 2018, Vol. 4(52), pp. 361–369 (in Russian), DOI: 10.32786/2071-9485-2018-04-51.
  10. Gutovsky D. A., Kamenev D. S., Khrushcheva E. O., Processing of multispectral aerial photography data from the unmanned aerial vehicle Sovzond Air-Con 3, GIS-tekhnologii v naukakh o Zemle: materialy Respublikanskogo nauchno-prakticheskogo seminara studentov i molodykh uchenykh, Minsk: BGU, 2019, pp. 114–117 (in Russian).
  11. Zeiliger A. M., Ermolaeva O. S., Muzylev E. L. et al., Computer analysis of water stress regimes of an irrigated agrocoenosis using the SWAP model and ground and space monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 33–43 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-33-43.
  12. Zolotokrylin A. N., Factors of regulation of the dry lands surface temperature using global AVHRR-derived land climatology, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 2. No. 6, pp. 380–387 (in Russian).
  13. Zolotokrylin A. N., Trofimova I. A., Titkova T. B., Ecological conditions estimation: “normal” arid pastures by MODIS and geobotanical data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 197–207 (in Russian).
  14. Zolotokrylin A. N., Titkova T. B., Vinogradova V. V., Cherenkova E. A., The impact of a changing climate on droughts, desertification and the livelihoods of the population of arid lands in the European part of Russia, Trudy Instituta Geologii Dagestanskogo Nauchnogo Centra RAN, 2016. No. 67, pp. 97–100 (in Russian).
  15. Zonn I. S., Trofimov I. A., Shamsutdinov Z. Sh., Shamsutdinov N. Z., Land resources of Russia arid territories, Arid ecosystems, 2004, Vol. 10, No. 22–23, pp. 87–102 (in Russian).
  16. Krinov E. A., Spektral’naya otrazhatel’naya sposobnost’ prirodnykh obrazovanii (Spectral reflectivity of natural formations), Moscow: Publ. House of the Academy of Sciences of the USSR, 1947, 270 p. (in Russian).
  17. Pankova E. I., Konyushkova M. V., Gorokhova I. N., On the problem of soil salinity’s evaluation and method of large-scale digital mapping of saline soils, Ecosystems: Ecology and Dynamics, 2017, Vol. 1, No. 1, pp. 26–54 (in Russian).
  18. Sadovnikov Yu. N., Priroda i kolichestvennye zakonomernosti otrazheniya sveta pochvami: Dis. kand. biol. nauk (Nature and quantitative patterns of light reflection by soils, Cand. techn. sci. thesis), Moscow, 1979, 224 p. (in Russian).
  19. Shapovalov D. A., Cherkashina E. V., Klyushin P. V., Gavrilova L. A., Limonov A. N., Evstratova L. G., Savinova S. V., Lepekhin P. P., Skubiev S. I., Shirokov R. S., Barbasov V. K., Vedeshin L. A., Bratkov V. V., Musaev M. R., Magomedova A. A., Musaeva Z. M., Shalov T. B., Metody distantsionnogo zondirovaniya i kosmicheskaya navigatsiya v tekhnologiyakh tochnogo zemledeliya (Remote sensing methods and space navigation in precision farming technologies), 2022, 423 p. (in Russian).
  20. Lhissou R., Harti A. E., Chokmani K., Mapping soil salinity in irrigated land using optical remote sensing data, Eurasian J. Soil Science, 2014, Vol. 3, No. 2, pp. 82–88., DOI: 10.18393/ejss.84540.
  21. Nguyen K. A., Liou Y. A., Tran H. P. et al., Soil salinity assessment by using nearinfrared channel and Vegetation Soil Salinity Index derived from Landsat-8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam, Progress in Earth and Planetary Science, 2020, Vol. 7, No. 1, DOI: 10.1186/s40645-019-0311-0.