ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 250-262

Seasonal variability of biomass and specific growth rate of phytoplankton for 2016–2020 in the deep-water zone of the Black Sea

I.V. Kovalyova 1 , V.V. Suslin 2 
1 A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Sevastopol, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 16.08.2023
DOI: 10.21046/2070-7401-2023-20-4-250-262
The seasonal average values of biomass and the specific growth rate of phytoplankton for three vast deep-water areas (from 500 m) of the Black Sea for 2016–2020 are presented for the first time. Estimates of phytoplankton indicators were carried out using model calculations and data from Aqua/Terra MODIS satellite observations. According to the calculation results, for years with cold winters (with a decrease in winter temperatures below 8 °C), a winter and spring or spring increase in phytoplankton indicators was noted. A noticeable autumn increase in the studied characteristics of phytoplankton was noted in the year after a warm winter. The results obtained are consistent with the estimates of earlier studies of the annual succession of microalgae under the influence of water temperature regime. During the five-year period, the maximum values of biomass were usually observed in winter, and the minimum values in summer. The maximum values of the specific growth rate were observed in different seasons in the years considered. The obtained differences in the seasonal and interannual variability of biomass and the specific growth rate of phytoplankton may indicate that the annual succession in the deep sea is not the same in different years. In 2016–2020, no statistically significant increasing or decreasing trends in the specific growth rate and biomass of phytoplankton were revealed.
Keywords: Black Sea, phytoplankton biomass, specific growth rate of phytoplankton, satellite observations, model calculations
Full text

References:

  1. Abakumov A. I., Pak S. Ya., Modeling of Photosynthesis Process and Assessing of Phytoplankton Dynamics Based on Droop Model, Matematicheskaya Biologiya i Bioinformatika, 2021, Vol. 16, No. 2, pp. 380–393 (in Russian), DOI: https://DOI.org/10.17537/2021.16.380.
  2. Dorofeyev V. L., Korotaev G. K., Sukhikh L. I., Analysis-forecast system of the Black Sea ecosystem state, Problems of Ecological Monitoring and Ecosystem Modelling, 2017, Vol. 28, No. 2, pp. 71–85 (in Russian), DOI: 10.21513/0207-2564-2017-2-71-85.
  3. Kovalyova I. V., Suslin V. V., Seasonal dynamics of phytoplankton biomass in different years in the shelf zone of the northern and northwestern parts of the Black Sea in three regions, Materialy 20 th Mezhdunarodnoi konferentsii ”Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 20th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 2022, p. 176 (in Russian), DOI: 10.21046/20DZZconf-2022a.
  4. Krasheninnikova S. B., Minkina N. I., Samyshev E. Z., Shokurova I. G., The influence of the complex of environmental factors on the phytoplankton and zooplankton biomass in the Black Sea in spring, Ekologiya i stroitelstvo, 2019, No. 4, pp. 14–21 (in Russian), DOI: 10.35688/2413-8452-2019-04-002.
  5. Kubryakov A. A., Belokopytov V. N., Zatsepin A. G. et al., The Black Sea Mixed Layer Depth Variability and Its Relation to the Basin Dynamics and Atmospheric Forcing, Physical Oceanography, 2019, Vol. 26, No. 5, pp. 397–413, DOI: 10.22449/1573-160X-2019-5-397-413.
  6. Mikaelyan A. S., Vremennaya dinamika fitoplanktona glubokovodnogo basseina Chornogo morya: Diss. dokt. biol. nauk (Time dynamics of phytoplankton in the deep-water basin of the Black Sea: Dr. biol. sci. thesis), Moscow, 2018, 266 p. (in Russian).
  7. Parkhomenko A. V., Krivenko A. V., Inter-year variability of phytoplankton biomass in the Black Sea for the period 1948–2001, Naukovi zapiski Ternopilskogo natzionalnogo pedagogicheskogo universitetu im. Volodimira Gnatuka, Ser.: Biology, Special Issue “Hydroecology”, 2010, Vol. 44, No. 3, pp. 198–201 (in Russian).
  8. Selifonova Zh. P. Yasakova O. N., Phytoplankton of areas of the seaports of the northeastern the Black Sea, Morskiy Ekologichnyy J., 2012, Vol. 11, No. 4, pp. 67–77 (in Russian), https://www.researchgate.net/publication/320866124.
  9. Solovjova N. V., Method of model assessments of ecological risk for Arctic shelf ecosystems of different productivity, Oceanology, 2021, Vol. 61, pp. 193–203, https://doi.org/10.1134/S0001437021020168.
  10. Stelmakh L. V., Zakonomernosti rosta fitoplanktona i ego potreblenie mikrozooplanktonom v Chernom more: Diss. doct. biol. nauk (Patterns of phytoplankton growth and its consumption by microzooplankton in the Black Sea: Dr. biol. sci. thesis) Sevastopol, 2017, 310 p. (in Russian).
  11. Stelmakh L. V., Seasonal variability of specific phytoplankton growth rate in coastal surface waters of the Black Sea, Sistemy kontrolya okruzhayushchei sredy, 2018, No. 11(31), pp. 101–109 (in Russian), DOI: 10.33075/2220-5861-2018-1-101-109.
  12. Stelmakh L. V., Effect of phytoplankton adaptation on the distribution of its biomass and chlorophyll a concentration in the surface layer of the Black Sea, Sistemy kontrolya okruzhayushchei sredy, 2019, No. 1(35), pp. 106–114 (in Russian), DOI: 10.33075/2220-5861-2019-1-106-114.
  13. Stelmakh L. V., Features of the Structural and Functional Characteristics of the Diatom Pseudosolenia calcar-avis, Inland Water Biology, 2022, Vol. 15, No. 3, pp. 315–323, DOI: 10.1134/S1995082922030154.
  14. Stelmakh L. V., Mansurova I. M., Long-term dynamics of phytoplankton and chlorophyll a concentration in the surface layer of the coastal waters of the Black Sea (Sevastopol region), Voprosy sovremennoi algologii, 2020, No. 1(22), pp. 66–81 (in Russian), DOI: 10.33624/2311-0147-2020-1(22)-66-81.
  15. Suslin V. V., Churilova T. Ya., Li M. E. et al., Comparison of the black sea Chlorophyll a algorithms for seawifs and MODIS instruments, Fundamental and Applied Hydrophysics, 2018, Vol. 11, No. 3, pp. 64–72 (in Russian), DOI: 10.7868/S2073667318030085.
  16. Finenko Z. Z., Churilova T. Ya., Suslin V. V., Primary products as the basis of commercial productivity. Assessment of phytoplankton biomass and primary production in the Black Sea using satellite data, In: Promyslovye resursy Chernogo i Azovskogo morei (Biological resources of the Black Sea and Sea of Azov), V. N. Eremeev, A. V. Gaevskaya, G. E. Shulman, Yu. A. Zagorodnyaya (eds.), Sevastopol: EKOSI-Gidrofizika, 2011, 367 p., Ch. 7, pp. 221–236 (in Russian).
  17. Finenko Z. Z., Kovaleva I. V., Suslin V. V., A New Approach to Estimate Phytoplankton Biomass and Its Variability in the Black Sea Surface Water Layer Based on Satellite Data, Uspekhi sovremennoi biologii, 2018, Vol. 138, No. 3, pp. 294–307 (in Russian), DOI: 10.7868/S0042132418030079.
  18. Finenko Z. Z., Mansurova I. M., Suslin V. V., Temporal Dynamics of Phytoplankton Biomass in the Surface Layer of the Black Sea According to Satellite Observations, Oceanology, 2022, Vol. 62, No. 3, pp. 358–368, DOI: 10.1134/S0001437022030043.
  19. Behrenfeld M. J., Boss E., Siegel D. A., Shea D. M., Carbon-Based Ocean Productivity and Phytoplankton Physiology from Space, Global Biogeochem. Cycles, 2005, Vol. 19, Issue 1, 14 p., https://doi.org/10.1029/2004GB002299.
  20. Chen B., Liu H., Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients and grazing, Limnology and Oceanography, 2010, Vol. 55, Issue 3, pp. 965–972, https://doi.org/10.4319/lo.2010.55.3.0965.
  21. Dorofeyev V. L., Sukhikh L. I., Study of Long-Term Variability of Black Sea Dynamics on the Basis of Circulation Model Assimilation of Remote Measurements, Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 2, pp. 224–232, DOI: 10.1134/S0001433817020025.
  22. Eppley R. W., Temperature and phytoplankton growth in the sea, Fishery Bull., 1972, Vol. 70, pp. 1063–1085.
  23. Finenko Z. Z., Kovalyova I. V., Suslin V. V., Use of Satellite Data for the Estimation of the Specific Growth Rate of Phytoplankton in the Surface Layer of the Black Sea, Russian J. Marine Biology, 2019, Vol. 45, No. 4, pp. 313–319, DOI: 10.1134/S1063074019040059.
  24. Geider R. J., MacIntyre L., Kana T. M., Dynamic model of phytoplankton growth and acclimation responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature, Marine Ecology Progress. Ser., 1997, Vol. 148, pp. 187–200, DOI: 10.3354/meps148187.
  25. Landry M. R., Hassett R. P., Estimating the Grazing Impact of Marine Micro-Zooplankton, Marine Biology, 1982, Vol. 67, pp. 283–288, https://doi.org/10.1007/BF00397668.
  26. Solovjova N. V., Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels, Ecological Modelling, 2019, Vol. 406(C), pp. 60–72, DOI: 10.1016/j.ecolmodel.2019.05.015.
  27. Solovjova N. V., Risk assessment simulation for shelf ecosystems based on the ecoscreening and dynamic methods synthesis, Estuarine, Coastal and Shelf Science, 2020, Vol. 243, Article 106881, DOI: 10.1016/j.ecss.2020.106881.
  28. Stelmakh L., Kovrigina N., Phytoplankton Growth Rate and Microzooplankton Grazing under Conditions of Climatic Changes and Anthropogenic Pollution in the Coastal Waters of the Black Sea (Sevastopol Region), Water, 2021, Vol. 13, Issue 22, Article 3230, DOI: 10.3390/w13223230.
  29. Suslin V. V., Churilova T. Ya., Regional algorithm for separating light absorption by chlorophyll-a and colored detrital matter in the Black Sea, using 480–560 nm bands from ocean color scanners, Intern. J. Remote Sensing, 2016, Vol. 37, No. 18, pp. 4380–4400, DOI: 10.1080/01431161.2016.1211350.
  30. Yunev O. A., Carstensen J., Stelmakh L. V. et al., Reconsideration of the phytoplankton seasonality in the open Black Sea, Limnology and Oceanography Letters, 2021, Vol. 6, Issue 1, pp. 51–59, DOI: 10.1002/lol2.10178.
  31. Yunev O., Carstensen J., Stelmakh L. et al., Temporal changes of phytoplankton biomass in the western Black Sea shelf waters: Evaluation by satellite data (1998–2018), Estuarine, Coastal and Shelf Science, 2022, Vol. 271, Article 107865, DOI: 10.1016/j.ecss.2022.107865.