ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 308-324

A method for assessing the characteristics of small-scale ionospheric inhomogeneities based on GPS monitoring results

V.P. Pashintsev 1 , D.V. Mishin 2 , M.V. Peskov 1 , S.A. Koval 3 
1 North-Caucasus Federal University, Stavropol, Russia
2 Povolzhskiy State University of Telecommunications and Informatics, Samara, Russia
3 Military Telecommunications Academy, Saint Petersburg, Russia
Accepted: 22.07.2023
DOI: 10.21046/2070-7401-2023-20-4-308-324
A method has been developed for processing measurement results of the total electronic content of the ionosphere using signals from global navigation satellite systems GPS/GLONASS. It allows to estimate the root mean square of small-scale fluctuations of the total electronic content and the average (characteristic) size of small-scale ionospheric inhomogeneities. The proposed method is based on a modification of the GPStation 6 dual-frequency receiver, which allows to significantly increase the sampling rate of measurements of the total electronic content and reduce the level of instrumental noise, and on the use of a discrete digital Butterworth filter to isolate small-scale fluctuations of the total electronic content. As a result of the analysis of the process of measuring the total electronic content of inhomogeneous ionosphere using GPS/GLONASS signals and a modified dual-frequency receiver GPStation 6, the cutoff frequencies of the bandpass filter used are justified: 1 and 10 Hz. Considering that such a filter should simultaneously have the smoothest possible amplitude-frequency response at transmission frequencies and should not introduce a large group delay into the measurement results, the use of a Butterworth filter of the 6th order is justified. It is shown that the analysis of the autocorrelation function of small-scale fluctuations of total electron content makes it possible to estimate the average size of the small-scale ionospheric inhomogeneities causing such fluctuations at the heights of maximum ionospheric ionization.
Keywords: total electronic content, small-scale fluctuations, root mean square deviation, average size, digital filter, autocorrelation function
Full text

References:

  1. Afraimovich E. L., Perevalova N. P., GPS-monitoring verkhnei atmosfery Zemli (GPS-monitoring of upper Earth’s atmosphere), Irkutsk: GU NC VSNC SO RAMN, 2006, 480 p. (in Russian).
  2. Vvedenie v tsifrovuyu filtratsiyu (Introduction to Digital Filtering), Bogner R., Constantinidis A., Filippov L. I. (eds.), Moscow: Mir, 1976, 216 p. (in Russian).
  3. Demyanov V. V., Yasukevich Yu. V., Space weather: risk factors for global navigation satellite systems, Solnechno-zemnaya fizika, 2021, Vol. 7, No. 2, pp. 30–52 (in Russian), DOI: 10.12737/szf-72202104.
  4. Davies K., Ionospheric Radio Waves, Waltham: Blaisdell Publ. Co., 1969, 460 p.
  5. Kravtsov Yu. A., Feizulin Z. I., Vinogradov A. G., Prokhozhdenie radiovoln cherez atmosferu Zemli (The passage of radio waves through the Earth’s atmosphere), Moscow: Radio i svyaz, 1983, 224 p. (in Russian).
  6. Maslov O. N., Pashintsev V. P., Modeli transionosfernykh radiokanalov i pomekhoustoichivost’ sistem kosmicheskoi svyazi. Prilozhenie k zhurnalu “Infokommunikatsionnye tekhnologii” (Models of trans-ionospheric radio channels and noise immunity of space communication systems. Supplement to the journal “Infocommunication Technologies”), Samara: PGATI, 2006, Issue 4, 357 p. (in Russian).
  7. Perevalova N. P., Evaluation of the characteristics of a ground-based GPS/GLONASS receiver network designed to monitor ionospheric disturbances of natural and man-made origin, Solnechno-zemnaya fizika, 2011, No. 19, pp. 124–133 (in Russian).
  8. Recommendation ITU-R P.531-14. Data on ionospheric propagation of radio waves and forecasting methods necessary for the design of satellite networks and systems, 2019, 25 p. (in Russian), https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.531-14-201908-I!!PDF-R.pdf.
  9. Ryzhkina T. E., Fedorova L. V., Investigation of static and spectral transatmospheric VHF-microwave radio signals, Zhurnal Radioelektroniki, 2001, No. 2, 16 p. (in Russian), http://jre.cplire.ru/win/feb01/3/text.html.
  10. Rytov S. M., Kravtsov Yu. N., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku (Introduction to Statistical Radiophysics), Moscow: Nauka, 1978, 464 p. (in Russian).
  11. Cherenkova L. E., Chernyshov O. V., Rasprostranenie radiovoln (Radio Waves Propagation), Moscow: Radio i svyaz, 1984, 272 p. (in Russian).
  12. Aarons J., Global Morphology of Ionospheric Scintillations, Proc. IEEE, 1982, No. 70(4), pp. 360–378, DOI: 10.1109/PROC.1982.12314.
  13. Carrano C., Groves K., The PS Segment of the AFRL-SCINDA Global Network and the Challenges of Real-Time TEC Estimation in the Equatorial Ionosphere, Proc. ION NTM, 2006, pp. 1036–1047.
  14. Crane R. K., Ionospheric scintillations, Proc. IEEE, 1977, No. 65(2), pp. 180–204, DOI: 10.1109/PROC.1977.10456.
  15. GPStation 6 TM, GNSS Ionospheric Scintillation and TEC Monitor (GISTM) Receiver User Manual, NovAtel Inc., 2012, 89 p., https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000132/om-20000132.pdf.
  16. OEM6® Family Firmware Reference Guide, NovAtel Inc., 2014, 737 p., https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000129/om-20000129.pdf.
  17. Pashintsev V. P., Linets G. I., Slyusarev G. V. et al. (2020a), GPS monitoring of small-scale fluctuations of total electron content of ionosphere, Intern. J. Advanced Research in Engineering and Technology, 2020, No. 11(5), pp. 341–352, DOI: 10.34218/IJARET.11.5.2020.035.
  18. Pashintsev V. P., Peskov M. V., Kalmykov I. A. et al. (2020b), Method for forecasting of interference immunity of low frequency satellite communication systems, AD ALTA: J. Interdisciplinary Research, 2020, Vol. 10, No. 1, pp. 367–375, DOI: 10.33543/1001.
  19. Shanmugam S., Jones J., MacAulay A., Van Dierendonck A. J., Evolution to Modernized GNSS Ionoshperic Scintillation and TEC Monitoring, Proc. IEEE/ION PLANS, 2012, pp. 265–273, DOI: 10.1109/PLANS.2012.6236891.
  20. Yeh K. C., Liu C. H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, No. 70(4), pp. 324–360, DOI: 10.1109/PROC.1982.12313.