ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 214-226

Classification of surface waters according to remote spectrometry data of visible range

B.L. Sukhorukov 1, 2 , N.V. Reshetnyak 1 
1 Hydrochemical Institute, Rostov-on-Don, Russia
2 Water Problems Institute RAS, South Division, Rostov-on-Don, Russia
Accepted: 25.07.2023
DOI: 10.21046/2070-7401-2023-20-4-214-226
The experimental data of long-term spectrometric measurements obtained on water bodies of Russia in the period from 2009 to 2020 are analyzed. Remote hyperspectral fieldwork was carried out from various platforms of the lower level from heights of 2 to 30 m. The main analyzed indicator was the spectrum of remote sensing reflectance (Rrs) of the radiation ascending from water in the visible region of the spectrum, 420–750 nm, with a spectral resolution of 1.8 nm. A classification graph of Rrs was constructed according to the shape of the spectra using the Ward’s method (divisive clustering). Average Rrs for each class and each group corresponding to the dendrogram are presented. The interpretation of Rrs of each of the groups is based on the knowledge of spectral features of optically active (visible) components of the aquatic ecosystem. The classification of Rrs according to purely spectral information makes it possible to single out three classes of spectra that obviously differ in shape. Further clustering is carried out within these classes using reference data obtained from analytical determination of water turbidity and trophicity of aquatic ecosystems. For waters of the second type, according to the spectral features, a total of 9 groups of Rrs were distinguished. A compact notation for each of the groups is proposed.
Keywords: surface waters, remote spectrometry, remote sensing reflectance, phytoplankton, chlorophyll, water ecosystem, clustering, dendrogram
Full text

References:

  1. Golubitskii B. M., Levin I. M., Tantashev M. V., Luminance coefficient of a semi-infinite layer of seawater, Izvestiya Akademii nauk SSSR, Ser. Fizika atmosfery i okeana, 1974, Vol. 10, No. 11, pp. 1235–1238 (in Russian).
  2. Zege E. P., Inzhenernye metody rascheta svetovykh polei v usloviyakh mnogokratnogo rasseyaniya. Rasprostranenie sveta v dispersnoi srede (Engineering methods for calculating light fields under multiple scattering conditions. Propagation of light in a dispersed medium), Minsk: Nauka i tekhnika, 1982, pp. 84–105 (in Russian).
  3. Kopelevich O. V., Optika okeana. T. 1. Fizicheskaya optika okeana (Ocean Optics. Vol. 1. Physical Ocean Optics), Moscow: Nauka, 1983, 371 p. (in Russian).
  4. RD 52.24.729.2010. Distantsionnaya spektrometricheskaya s″emka vodnykh ob″ektov v vidimom diapazone voln s mostovykh perekhodov (RD 52.24.729.2010. Remote spectrometric survey of water bodies in the visible wavelength range from bridge crossings), Rostov-on-Don, 2010, 2 p. (in Russian).
  5. Sukhorukov B. L., Reshetnyak N. V., Chapter III/47: Development of a Method of Remote Spectrometry for Assessing the State of Aquatic Ecosystems and Classification of Aquatic Landscapes, In: Novel Methods and Results of Landscape Research in Europe, Central Asia and Siberia, in 5 vol., Vol. 3, Landscape Monitoring and Modelling, V. G. Sychev, L. Mueller (eds.), Moscow: Publ. House FSBSI “Pryanishnikov Institute of Agrochemistry”, 2018, pp. 224–228 (in Russian), DOI: 10.25680/9000.2018.56.65.240.
  6. Sukhorukov B. L., Garbuzov G. P., Nikanorov A. M., Assessment of the state of water bodies by the spectra of the brightness coefficient, Vodnye resursy, 2000, No. 5, pp. 579–588 (in Russian).
  7. Sukhorukov B. L., Kovaleva G. E., Novikov I. V., Assessing the trophic state of water bodies by high-resolution remote spectrometry in visible band, Water Resources, 2017, Vol. 44(1), pp. 117–127.
  8. Sukhorukov B. L., Novikov I. V., Kovaleva G. E., Reshetnyak N. V., Baza spektrometricheskikh dannykh vysokogo razresheniya po vodnym obektam yuga Rossii (Database of high-resolution spectrometric data on water bodies in the south of Russia), Certificate of state registration of database No. 2018620272 (RU), Reg. 14.02.2018 (in Russian).
  9. Sukhorukov B. L., Reshetnyak N. V., Kovaleva G. E., Bio-optical model of the Lower Don for assessing the phytoplankton chlorophyll a concentration by remote sensing spectrometric information, Nauka Yuga Rossii, 2020, Vol. 16, No. 2, pp. 41–50 (in Russian), DOI: 10.7868/S25000640200205.
  10. Khalafyan A. A., STATISTICA 6. Statisticheskii analiz dannykh (STATISTICA 6. Statistical data analysis), Moscow: Binom, 2009, 522 p. (in Russian).
  11. Shifrin K. S., Vvedenie v optiku okeana (Introduction to Ocean Optics), Leningrad: Gidrometeoizdat, 1983, 280 p. (in Russian).
  12. Lee Z., Tang J., The Two Faces of “Case-1” Water, J. Remote Sensing, 2022, Vol. 2022, Article 9767452, DOI: 10.34133/2022/9767452.
  13. Mobley C. D., Estimation of the remote-sensing reflectance from above-surface measurements, Applied Optics, 1999, Vol. 38(36), pp. 7442–7455, DOI: 10.1364/ao.38.007442.
  14. Morel A., Prieur L., Analysis of variations in ocean color, Limnology and Oceanography, 1977, Vol. 22(4), pp. 709–722.
  15. Spyrakos E., O’Donnell R., Hunter P. D. et al., Optical types of inland and coastal waters, Limnology and Oceanography, 2018, Vol. 63(2), pp. 846–870, DOI: 10.1002/lno.10674.
  16. Vazyulya S., Deryagin D., Glukhovets D. et al., Regional Algorithm for Estimating High Coccolithophore Concentration in the Northeastern Part of the Black Sea, Remote Sensing, 2023, Vol. 15, Article 2219, DOI: 10.3390/rs15092219.