Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 281-296
On relationship between interannual variability of heat and moisture exchange parameters of the ocean-atmosphere system in the intertropical convergence zone
V.N. Malinin
1 , P.A. Vainovskу
2 , S.M. Gordeeva
1, 3 1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 OOO Prognoz, Saint Petersburg, Russia
3 Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 12.07.2023
DOI: 10.21046/2070-7401-2023-20-4-281-296
The results of calculations of the radiation indices Ga and Gs characterizing the greenhouse effect, as well as the parameters of heat and moisture exchange between the ocean and the atmosphere over a 40-year period (1979–2018) for individual oceans and the oceanic region of the intertropical convergence zone (ITCZ) are discussed as a whole (10° N – 10° S), based on NCEP – DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis archive data. The fundamental difference between the indices Ga and Gs is that if Ga characterizes the greenhouse effect of the atmosphere and mainly affects the variability of atmospheric convection and precipitation, then Gs, through the greenhouse effect, forms positive trends in the characteristics of heat and moisture exchange between the ocean and the atmosphere and simultaneously affects their interannual variability. A conceptual diagram of the relationship between the interannual variability of hydrometeorological parameters in the ITCZ has been compiled. The dominating effect of total precipitable water (TPW) is shown simultaneously on the formation of the interannual variability of Ga, as well as on the trend and variability of Gs. At the same time, the surface air temperature in the near-water layer of the ocean and the difference between precipitation and evaporation approximately equally affect surface air temperature variability. However, the trend in TPW is formed exclusively due to moisture exchange processes, since the trends in precipitation and evaporation are several times higher than the trend in surface air temperature. It is shown that precipitation determines the intensity of the ascending branch of the Hadley cell; serves as the “motor” of the meridional circulation of the atmosphere. At the same time, only 2 parameters have a dominant effect on precipitation: greenhouse effect in the troposphere, determined by the Ga index, and evaporation in the zone 0–10 S, which describe 87 % of the dispersion of interannual precipitation variability in the main zone of the ITCZ, north of the equator.
Keywords: greenhouse effect, intertropical convergence zone, ITCZ, Hadley cell, radiation indices, ocean heat and moisture exchange, trends
Full textReferences:
- Malinin V. N., Vlagoobmen v sisteme okean-atmosfera (Moisture exchange in the ocean-atmosphere system), Saint Petersburg: Gidrometeoizdat, 1994, 197 p. (in Russian).
- Malinin V. N., Statisticheskie metody analiza gidrometeorologicheskoi informatsii (Statistical methods of analysis of hydrometeorological information), Saint Petersburg: RGGMU, 2008, 408 p. (in Russian).
- Malinin V. N., Vainovskii P. A. (2021a), Moisture exchange between the ocean and the atmosphere in the intertropical convergence zone, Gidrometeorologiya i ekologiya, 2021, No. 63, pp. 255–278 (in Russian), DOI: 10.33933/2713-3001-2021-63-255-278.
- Malinin V. N., Vainovsky P. A. (2021b), Trends in moisture exchange components in the ocean – atmosphere system under global warming according to the Reanalysis-2 archive, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 9–25 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-9-25.
- Malinin V. N., Gordeeva S. M., Variability of evaporation and precipitation over the ocean according to satellite data, Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 23–34 (in Russian), DOI: 10.7868/S0205961416040047.
- Malinin V. N., Gordeeva S. M., Naumov L. M., Total precipitable water of the atmosphere as a climate forcing factor, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 243–251 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-243-251.
- Smirnov B. M., Fizika global’noi atmosfery. Parnikovyi ehffekt, atmosfernoe elektrichestvo, evolyutsiya klimata (Physics of the global atmosphere. Greenhouse effect, atmospheric electricity, climate evolution), Dolgoprudnyi: Izd. dom “Intellekt”, 2017, 256 p. (in Russian).
- Basconcillo J., Moon I.-J., Wang B., Mistry M., Possible influence of the warm pool ITCZ on compound climate extremes during the boreal summer, Environmental Research Letters, 2021, Vol. 16, No. 11, Article 114039, DOI: 10.1088/1748-9326/ac30f8.
- Bellomo K., Clement A. C., Evidence for weakening of the Walker circulation from cloud observations, Geophysical Research Letters, 2015, Vol. 42, No. 18, pp. 7758–7766, DOI: 10.1002/2015GL065463.
- Berry G., Reeder M. J., Objective identification of the intertropical convergence zone: climatology and trends from the ERA-Interim, J. Climate, 2014, Vol. 27, No. 5, pp. 1894–1909, DOI: 10.1175/JCLI-D-13-00339.1.
- Bischoff T., Schneider T., Energetic constraints on the position of the intertropical convergence zone, J. Climate, 2014, Vol. 27, No. 13, pp. 4937–4951, DOI: 10.1175/JCLI-D-13-00650.1.
- Boer G. J., Climate change and the regulation of the surface moisture and energy budgets, Climate Dynamics, 1993, Vol. 8, No. 5, pp. 225–239, DOI: 10.1007/BF00198617.
- Bony S., Stevens B., Coppin D. et al., Thermodynamic control of anvil cloud amount, Proc. National Academy of Sciences, 2016, Vol. 113, No. 32, pp. 8927–8932, DOI: 10.1073/pnas.1601472113.
- Byrne M. P., Schneider T., Narrowing of the ITCZ in a warming climate: Physical mechanisms, Geophysical Research Letters, 2016, Vol. 43, No. 21, https://onlinelibrary.wiley.com/doi/10.1002/2016GL070396.
- Byrne M. P., Pendergrass A. G., Rapp A. D., Wodzicki K. R., Response of the intertropical convergence zone to climate change: location, width, and strength, Current Climate Change Reports, 2018, Vol. 4, No. 4, pp. 355–370, DOI: 10.1007/s40641-018-0110-5.
- Chung E.-S., Soden B. J., An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models, J. Climate, 2015, Vol. 28, No. 10, pp. 4152–4170, DOI: 10.1175/JCLI-D-14-00436.1.
- Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Report, Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.), Cambridge; New York: Cambridge Univ. Press, 2013, 1535 p.
- Donohoe A., Marshall J., Ferreira D., Armour K., McGee D., The interannual variability of tropical precipitation and interhemispheric energy transport, J. Climate, 2014, Vol. 27, No. 9, pp. 3377–3392, DOI: 10.1175/JCLI-D-13-00499.1.
- Fasullo J., Trenberth K., The annual cycle of the energy budget. Part II: Meridional structures and poleward transports, J. Climate, 2008, Vol. 21, pp. 2313–2325, DOI: 10.1175/2007JCLI1936.1.
- Flerchinger G. N., Xaio W., Marks D., Sauer T. J., Yu Q., Comparison of algorithms for incoming atmospheric long-wave radiation, Water Resources Research, 2009, Vol. 45, Article W03423, DOI: 10.1029/2008WR007394.
- Guo Y., Cheng J., liang S., Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation, Theoretical and Applied Climatology, 2019, No. 135, pp. 1045–1058, DOI: 10.1007/s00704-018-2423-7.
- Hansen J., Sato M., Ruedy R. et al., Efficacy of climate forcings, J. Geophysical Research: Atmospheres, 2005, Vol. 110, Article D18, https://onlinelibrary.wiley.com/doi/abs/10.1029/2005JD005776.
- Kanamitsu M., Description of the NMC Global Data Assimilation and Forecast System, Weather and Forecasting, 1989, Vol. 4, No. 3, pp. 335–342, DOI: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.
- Kanamitsu M., Ebisuzaki W., Woollen J. et al., NCEP–DOE AMIP-II Reanalysis (R-2), Bull. American Meteorological Society, 2002, Vol. 83, No. 11, pp. 1631–1644, DOI: 10.1175/BAMS-83-11-1631.
- Kang S. M., Shin Y., Xie S.-P., Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection, J. Climate and Atmospheric Science, 2018, Vol. 1, No. 1, Article 20172, DOI: 10.1038/s41612-017-0004-6.
- Liu C., Liao X., Qiu J. et al., Observed variability of intertropical convergence zone over 1998–2018, Environmental Research Letters, 2020, Vol. 15, No. 10, Article 104011, DOI: 10.1088/1748-9326/aba033.
- Maycock A. C., Randel W. J., Steiner A. K. et al., Revisiting the mystery of recent stratospheric temperature trends, Geophysical Research Letters, 2018, Vol. 45, No. 18, pp. 9919–9933, DOI: 10.1029/2018GL078035.
- Philander S. G. H., Gu D., Lambert G. et al., Why the ITCZ is mostly north of the equator, J. Climate, 1996, Vol. 9, No. 12, pp. 2958–2972, DOI: 10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.
- Randel W. J., Smith A. K., Wu F. et al., Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations, J. Climate, 2016, Vol. 29, No 13, pp. 4843–4859, DOI: 10.1175/JCLI-D-15-0629.1.
- Raval A., Ramanathan V., Observational determination of the greenhouse effect, Nature, 1989, Vol. 342, No. 6251, pp. 758–761, DOI: 10.1038/342758a0.
- Schmidt G. A., Ruedy R. A., Miller R. L., Lacis A. A., Attribution of the present-day total greenhouse effect, J. Geophysical Research: Atmospheres, 2010, Vol. 115, Article D20, https://onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014287.
- Song J., Wang Y., Tang J., A Hiatus of the Greenhouse Effect, Scientific Reports, 2016, Vol. 6, No. 1, Article 33315, DOI: 10.1038/srep33315.
- Webb M. J., Slingol A., Stephens G. L., Seasonal variations of the clear-sky greenhouse effect: the role of changes in atmospheric temperatures and humidities, Climate Dynamics, 1993, Vol. 9, No. 3, pp. 117–129, DOI: 10.1007/BF00209749.
- Wodzicki K. R., Rapp A. D., Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim, J. Geophysical Research: Atmospheres, 2016, Vol. 121, No. 7, pp. 3153–3170, DOI: 10.1002/2015JD024458.