Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 149-164
Analysis of Landsat time series to identify climate-induced land cover changes on Kolguev Island
A.G. Shmatova
1 , J.A. Loshchagina
1 , P.M. Glazov
1 1 Institute of Geography RAS, Moscow, Russia
Accepted: 12.05.2023
DOI: 10.21046/2070-7401-2023-20-4-149-164
A method for analyzing Landsat time series was tested to identify climate-induced land cover changes in the tundra zone. Kolguev Island was chosen as a model area. Ways of solving the problems of applying the method in this region (cloudiness, landscape heterogeneity) are proposed. Long time series (1987–2020, 12 time slices) were used to obtain statistically significant results. For this purpose, criteria for selecting images were tested. We used images without atmospheric correction from Landsat-5, -7, -8 taken during active vegetation period. The training sample for image classification was created based on field descriptions of landscapes and then increased and corrected in several stages. Pixel-by-pixel comparison of classified images allowed to localize changes, which let to further refine the training sample, as well as to better interpret the results. The changes observed in each pixel were summarized for the entire region and presented as graphs. On them, the dynamics of the total area of a land cover class was decomposed into constituent transitions to/from other classes. The calculated coefficient of reliable approximation (R2) of some trends reached 0.6. Interpretation of the identified changes was carried out according to the landscape interpretation of the classes, their spectral characteristics and verification using more detailed images. Thus, the following changes were revealed on Kolguev Island: overgrowing of sedge communities with willows, drying up of fens and “greening” of moss-lichen tundras. At the same time, the processes of palsa mire degradation were not identified; the area of open sands had a weak trend towards reduction. Thus, the considered method can be recommended for a comprehensive identification of land cover changes in tundra landscapes.
Keywords: time series analysis, Landsat, land cover changes, climate change, tundra, Kolguev
Full textReferences:
- Atlas Arktiki (Atlas of the Arctic), Moscow: Glavnoe upravlenie geodezii i kartografii, 1985, 204 p. (in Russian).
- Belonovskaya E. A., Tishkov A. A., Vaisfeld M. A., Glazov P. M., Krenke Jr. A. N., Morozova O. V., Pokrovskaya I. V., Tsarevskaya N. G., Tertitskii G. M., “Greening” of the Russian Arctic and the Modern Trends of Transformation of Its Biota, Izvestiya Rossiiskoi Akademii Nauk. Ser. geograficheskaya, 2016, No. 3, pp. 28–39 (in Russian), https://doi.org/10.15356/0373-2444-2016-3-28-39.
- Brouchkov A. V., Global environmental changes, the permafrost zone response and engineering structures stability, Inzhenernye izyskaniya, 2015, No. 14, pp. 14–26 (in Russian).
- Elsakov V. V., Spatial and interannual heterogeneity of changes in the vegetation cover of Eurasian tundra: Analysis of 2000–2016 MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 56–72 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-56-72.
- Elsakov V. V., Teljatnikov M. Y., Effects of interannual climatic fl uctuations of the last decade on NDVI in north-eastern European Russia and Western Siberia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 260–271 (in Russian).
- Zhuravlev V. A., Korago E. A., Kostin D. A. et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:1 000 000 (tret’e pokolenie). Ser. Severo-Karsko-Barentsevomorskaya. List R-39,40 — o. Kolguev – prol. Karskie Vorota. Ob″yasnitel’naya zapiska (State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Ser. North Kara-Barents Sea. Sheet R-39,40 — Kolguev island – prol. Kara Gate. Explanatory Letter), Saint Petersburg: Kartograficheskaya fabrika VSEGEI, 2014, 405 p. (in Russian), https://webftp.vsegei.ru/GGK1000/R-39,40/R-39-40_ObZap.pdf.
- Zinchenko A. G., Geomorphological scheme Scale 1:2 500 000, In: Map of the Pliocene-Quaternary formations. Sheet R-39,40 (Kolguev Island – Kara Gate Strait.), Saint Petersburg: Kartograficheskaya fabrika VSEGEI, 2014, 1 p. (in Russian).
- Lavrinenko I. A., Using remote sensing for geobotanical zoning of the East European tundra, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 269–276 (in Russian).
- Lavrinenko I. A., Map of technogenic disturbance of Nenets Autonomous District, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 128–136 (in Russian), DOI: 10.21046/2070-7401-2018-15-2-128-136.
- Lavrinenko O. V., Lavrinenko I. A., Vegetation cover of reindeer pastures of Kolguev Island: continuity of research and modern approaches, Trudy mezhdunarodnoi nauchnoi konferentsii, posvyashchennoi 300-letiyu osnovaniya BIN RAN: Botanika: Istoriya, teoriya, praktika (Proc. Intern. Scientific Conf. Dedicated to the 300th Anniversary of BIN RAS: Botany: History, Theory, Practice), 2014, pp. 124–131 (in Russian).
- Lavrinenko I. A., Romanenko T. M., Lavrinenko O. V., Geobotanical zoning of Kolguev Island, Reshenie actual’nykh problem prodovol’stvennoi bezopasnosti krainego severa, Murmansk: MAGU, 2016, pp. 101–105 (in Russian).
- Loupian E. A., Savin I. Yu., Bartalev S. A., Tolpin V. A., Balashov I. V., Plotnikov D. E., Satellite Service for Vegetation Monitoring VEGA, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190–198 (in Russian).
- Oberman N. G., Global warming and change in the permafrost zone of the Pechora-Ural region, Razvedka i okhrana nedr, 2007, No. 4, pp. 63−68 (in Russian).
- Tigeev A. A., Moskovchenko D. V., Fahretdinov A. V., Current trends in natural and anthropogenic vegetation in Western Siberia’s sub-tundra forests based on vegetation indices data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 166–177 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-166-177.
- Tishkov A. A., Belonovskaya E. A., Glazov P. M., Krenke A. N., Titova S. V., Tsarevskaya N. G., Shmatova A. G., Anthropogenic transformation of the Russian Arctic ecosystems: approaches, methods, assessments, Arctic: ecology and economy, 2019, No. 4, pp. 38–51 (in Russian), DOI: 10.25283/2223-4594-2019-4-38-51.
- Chernykh D. V., Biryukov R. Yu., Zolotov D. V., Pershin D. K., Spatiotemporal dynamics of landscapes of plain and mountain catchments in the Altai region during the last 40 years, Geography and Natural Resources, 2018, Vol. 39, No. 3, pp. 228–238, DOI: 10.1134/S187537281803006X.
- Beamish A., Raynolds M. K., Epstein H., Frost G. V., Macander M. J., Bergstedt H., Bartsch A., Kruse S., Miles V., Tanis C. M., Heim B., Fuchs M., Chabrillat S., Shevtsova I., Verdonen M., Wagner J., Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook, Remote Sensing of Environment, 2020, Vol. 246, Article 111872, https://doi.org/10.1016/j.rse.2020.111872.
- Bhatt U. S., Walker D. A., Raynolds M. K., Bieniek P. A., Epstein H. E. Comiso J. C., Pinzon J. E., Tucker C. J., Steele M., Ermold W., Zhang J., Changing seasonality of panarctic tundra vegetation inrelationship to climatic variables, Environmental Research Letters, 2017, Vol. 12, No. 5, Article 055003, https://doi.org/10.1088/1748-9326/aa6b0b.
- Fu D., Su F., Wang J., Sui Y., Patterns of Arctic Tundra Greenness Based on Spatially Downscaled Solar-Induced Fluorescence, Remote Sensing, 2019, Vol. 11, No. 12, Article 1460, https://doi.org/10.3390/rs11121460.
- Gamm C. M., Sullivan P. F., Buchwal A., Dial R. J., Young A. B., Watts D. A., Cahoon S. M. P., Welker J. M., Post E., Declining growth of deciduous shrubs in the warming climate of continental western Greenland, J. Ecology, 2018, Vol. 106, pp. 640–654, https://doi.org/10.1111/1365- 2745.12882.
- Heijmans M. M. P. D., Magnússon R., Lara M. J., Frost G. V., Myers-Smith I. H., van Huissteden J., Jorgenson M. T., Fedorov A. N., Epstein H. E., Lawrence D. M., Limpens J., Tundra Vegetation Change and Impacts on Permafrost, Nature Reviews Earth and Environment, 2022, Vol. 3, pp. 68–84, https://doi.org/10.1038/s43017-021-00233-0.
- Lara M. J., Nitze I., Grosse G., Martin P., McGuire A. D., Reduced arctic tundra productivity linked with landform and climate change interactions, Scientific Reports, 2018, Vol. 8, Article 2345, https://doi.org/10.1038/s41598-018-20692-8.
- Lavrinenko O. V., Lavrinenko I. A., Twenty-one year dynamics of vegetation from long-term plots in East European tundra, Environmental Dynamics and Global Climate Change, 2022, Vol. 13, No. 2, pp. 70–103, DOI: 10.18822/edgcc109513.
- Lavrinenko O. V., Tyusov G. A., Petrovskii V. V., Impact of climate warming on floristic diversity of the East European tundra, Environmental Dynamics and Global Climate Change, 2022, Vol. 13, No. 1, pp. 25–34, DOI: 10.18822/edgcc101643.
- Liljedahl A. K., Boike J., Daanen R. P., Fedorov A. N., Frost G. V., Grosse G., Hinzman L. D., Iijma Y., Jorgenson J. C., Matveyeva N., Necsoiu M., Raynolds M. K., Romanovsky V. E., Schulla J., Tape K. D., Walker D. A., Wilson C. J., Yabuki H., Zona D., Pan-arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geoscience, 2016, Vol. 9, pp. 312–318, https://doi.org/10.1038/ngeo2674.
- Magnusson R. I., Limpens J., Kleijn D., Huissteden K., Maximov T. C., Lobry S., Heijmans M. M. P. D., Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra, Science of the Total Environment, 2021, Vol. 782, Article 146877, https://doi.org/10.1016/j.scitotenv.2021.146877.
- Mortey E. M., Annor T., Arnault J., Inoussa M. M., Madougou S., Kunstmann H., Nyantakyi E. K., Interactions between Climate and Land Cover Change over West Africa, Land, 2023, Vol. 1, Article 355, https://doi.org/10.3390/land12020355.
- Myers-Smith I. H., Kerby J. T., Phoenix G. K., Bjerke J. W., Epstein H. E., Assmann J. J., John C., Andreu-Hayles L., Angers-Blondin S., Beck P. S., Berner L. T., Bhatt U. S., Bjorkman A. D., Blok D., Bryn A., Christiansen C. T., Cornelissen J. H. C., Cunliffe A. M., Elmendorf S. C., Forbes B. C., Goetz S. J., Hollister R. D., de Jong R., Loranty M. M., Macias-Fauria M., Maseyk K., Normand S., Olofsson J., Parker T. C., Parmentier F. J. W., Post E., Schaepman-Strub G., Stordal F., Sullivan P. F., Thomas H. J., Tommervik H., Treharne R., Tweedie C. E., Walker D. A., Wilmking M., Wipf S., Complexity revealed in the greening of the Arctic, Nature Climate Change, 2020, Vol. 10, pp. 106–117, https://doi.org/10.1038/s41558-019-0688-1.
- Olvmo M., Holmer B., Thorsson S., Reese H., Lindberg F., Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016, Scientific Reports, 2020, Vol. 10, Article 8937, https://doi.org/10.1038/s41598-020-65719-1.
- Phoenix G. K., Bjerke J. W., Arctic browning: Extreme events and trends reversing arctic greening, Global Change Biology, 2016, No. 22, pp. 2960–2962, DOI: 10.1111/gcb.13261.
- Serra P., Pons X., Saurí D., Post-classification change detection with data from different sensors: some accuracy considerations, Intern. J. Remote Sensing, 2003, Vol. 24, pp. 3311–3340, DOI: 10.1080/0143116021000021189.
- Shevtsova I., Heim B., Kruse S., Schroeder J., Troeva E., Pestryakova L. A., Zakharov E. S., Herzschuh U., Strong shrub expansion in tundra-taiga, tree infilling in taigaand stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017, Environmental Research Letters, 2020, Vol. 15, Article 085006, https://doi.org/10.1088/1748-9326/ab9059.