Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 133-146
Experiment to determine the dynamics of Earth surface displacements in the Uzon-Geyser volcano-tectonic depression using Sentinel-1A differential interferometry data for 2017–2022
V.Yu. Shirshova
1, 2 , E.A. Baldina
1, 3 , E.V. Lebedeva
3 1 Lomonosov Moscow State University, Moscow, Russia
2 Research Center for Earth Operative Monitoring, Moscow, Russia
3 Institute of Geography RAS, Moscow, Russia
Accepted: 04.07.2023
DOI: 10.21046/2070-7401-2023-20-4-133-146
Volcanic and seismically active regions experience significant changes in relief, both endogenous and exogenous in nature, making monitoring of the Earth’s surface in such areas relevant. By applying differential interferometry, it is possible to detect uplift and subsidence remotely. Despite the fact that the method has already confidently proved itself in solving a number of Earth sciences problems, the development of its application issues in areas which are difficult to access for regular monitoring does not lose topicality. In our work, we carried out an experiment to determine displacements in the Uzon-Geyser volcano-tectonic depression using recent Sentinel-1A radar data, guided by similar findings obtained almost 20 years ago from Radarsat-1 data. Particular attention was paid to data selection issues, considering the survey parameters and weather conditions at the time of survey, which influence the final result. On 25 images, 260 interferograms and the same number of coherence images were formed, covering the time interval from 2017 to 2022. Analysis of meteorological data at the moments of the surveys and evaluation of the terrain conditions reduced the number of suitable interferometric pairs for processing to 15. The criteria formulated in the process of work for the selection of optimal survey conditions for this area to determine the multi-year displacements of the Earth’s surface on a pair of images, determined the choice of 1 pair of images — 18.08.2017 and 04.08.2022. According to the results of processing of this pair, the dips and rises in different areas of the study area from –15 to +7 cm were recorded.
Keywords: differential interferometry, Sentinel-1, Kamchatka, meteorological data, Uzon-Geyser volcano-tectonic depression
Full textReferences:
- Atlas doliny reki Geizernoi v Kronotskom zapovednike (Atlas of the valley of the Geysernaya River in the Kronotsky Reserve), Zavadskaya A. V. (ed.), Moscow: Krasand, 2015, 88 p. (in Russian).
- Badak L. A., Kostyuk E. A., Shirshova V. Yu., Zakharov A. I., Methodological recommendations for radar interferometric survey to form a digital elevation model of the earth’s surface, X Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii” (Proc. X All-Russian Scientific and Technical Conf. “Actual Problems of Rocket and Space Instrumentation and Information Technology”), Moscow: AO “Rossiiskie kosmicheskie sistemy”, 2021, pp. 139–147 (in Russian).
- Belousov V. I., Grib E. N., Leonov V. L., Geological positions of hydrothermal systems of the Valley of Geysers and Uzon Caldera, Vulkanologiya i seismologiya, 1983, No. 1, pp. 65–79 (in Russian).
- Verba V. S., Neronskii L. B., Osipov I. G., Turuk V. E., Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Space-based ground-penetrating radar systems), Moscow: Radiotekhnika, 2010, 680 p. (in Russian).
- Dobrynin I. I., Pesyak F. V., Savin A. I., Sevast’yanov N. N., Measurement of Earth surface displacements by radar interferometry with the use of angle reflectors of radio signal, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14. No. 5, pp. 113–121 (in Russian), DOI: 10.21046/2070-7401-2017-14-5-113-121.
- Dobrynin I. I., Savin A. I., Sevast’yanov N. N., Study of factors affecting the accuracy of displacement measurement by radar interferometry using corner reflectors, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 29–38 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-29-36.
- Zakharov A. I., Yakovlev O. I., Smirnov V. M., Sputnikovyi monitoring Zemli: Radiolokatsionnoe zondirovanie poverkhnosti (Satellite Monitoring of the Earth: Radar Sounding of the Surface), Moscow: URSS, 2012, 248 p. (in Russian).
- Zakharov A. I., Zakharova L. N., Mikhaylyukova P. G., Atmospheric influence in studies of the dynamics of the Tolbachinsky dale relief by radar interferometry methods, Trudy 7-kh Vserossiiskikh Armandovskikh chtenii (Proc. 7th All-Russian Armandov Readings), Moscow: Poligraficheskii tsentr MI VlGU, 2017, pp. 68–73 (in Russian).
- Zakharov A. I., Zakharova L. N., Sinilo V. P., Denisov P. V., Influence of the atmosphere on studies of rugged terrain by radar interferometry methods, Zhurnal radioelektroniki, 2023, No. 2, pp. 1684–1719 (in Russian), DOI: 10.30898/1684-1719.2023.2.6.
- Kugaenko Yu. A., Leonov V. L., Toward a dynamic model of the magma chamber beneath the Uzon Geyser Depression, Volyntsovskie chteniya (Volyntsov Readings), 2018, pp. 22–23 (in Russian).
- Kugaenko Yu. A., Saltykov V. A., Konovalova A. A., Local seismicity of the Valley of Geysers area according to field observations 2008–2009, Vestnik Kamchatskoi regional’noi assotsiatsii “Uchebno-nauchnyi tsentr”, Ser.: Nauki o Zemle, 2010, No. 1, pp. 90–99 (in Russian).
- Kugaenko Yu. A., Saltykov V. A., Gorbatikov A. V., Stepanova M. Yu., Development of the Uzon-Geysernaya volcano-tectonic depression and Kikhpinych volcano model (Kamchatka) based on the results of joint analysis of microseismic sounding data and local geodynamic activity, Fizika Zemli, 2015, No. 3, pp. 89–101 (in Russian), DOI: 10.7868/S0002333715030096.
- Lebedeva E. V., Baldina E. A., Medvedev A. A., Slope processes in the Geysernaya River valley (Kamchatka): results of interpretation of multi-temporal satellite images of high spatial resolution, Geomorfologiya, 2022, Vol. 53, No. 4, pp. 3–16 (in Russian), DOI: 10.31857/S0435428122040095.
- Shirshova V. Yu., Physical and geographic characteristics of the territory as the main factor in the choice of interferometric pair parameters, Regional’nye problemy distantsionnogo zondirovaniya Zemli: materialy 9 th Mezhdunarodnoi nauchnoi konferentsii (Regional Problems of Earth Remote Sensing: Proc. 9th Intern. Scientific Conf.), Krasnoyarsk: Siberian Federal Univ., 2022, pp. 81–83 (in Russian).
- Bamler R., Hartl P., Synthetic aperture radar interferometry, Inverse Problems, 1998, Vol. 14, No. 4, pp. R1–R54.
- Cigna F., Osmanoğlu B., Cabral-Cano E. et al., Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico, Remote Sensing of Environment, 2012, Vol. 117, pp. 146–161, DOI: 10.1016/j.rse.2011.09.005.
- Ferretti A., Massonet D., Monti Guarnieri A., Prati C., Rocca F., InSAR principles-guidelines for SAR interferometry processing and interpretation, ESA Publications, 2007, Vol. 19, 40 p.
- Goldstein R. M., Werner C. L., Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 1998, Vol. 25, No. 21, pp. 4035–4038, DOI: 10.1029/1998GL900033.
- Gupta R. P., Remote sensing geology, Springer, 2017, 427 p.
- Hanssen R. F., Radar interferometry: data interpretation and error analysis, Springer Science and Business Media, 2001, Vol. 2, 318 p., DOI: 10.1007/0-306-47633-9.
- Hooper A., Segall P., Zebker H., Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, J. Geophysical Research: Solid Earth, 2007, Vol. 112, No. B7, DOI: 10.1029/2006JB004763.
- Kiryukhin A. V., Rychkova T. V., Dubrovskaya I. K., Formation of the hydrothermal system in Geysers Valley (Kronotsky Nature Reserve, Kamchatka) and triggers of the Giant Landslide, Applied Geochemistry, 2012, Vol. 27, pp. 1753–1766, DOI: 10.1016/j.apgeochem.2012.02.011.
- Lanari R., Berardino P., Bonano M. et al., Surface displacements associated with the L’Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS‐DInSAR time series analysis, Geophysical Research Letters, 2010, Vol. 37, No. 20, pp. 1–6, DOI: 10.1029/2010GL044780.
- Lundgren P., Lu Z., Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations, Geophysical Research Letters, 2006, Vol. 33, No. 6, DOI: 10.1029/2005GL025181.
- Lundgren P., Girona T., Bato M. G. et al., The dynamics of large silicic systems from satellite remote sensing observations: The intriguing case of Domuyo volcano, Argentina, Scientific Reports, 2020, Vol. 10, No. 1, pp. 1–15, DOI: 10.1007/s00445-021-01457-0.
- Massom R., Lubin D., Polar remote sensing, Chichester: Springer, 2006, Vol. 2, 262 p.
- Pepe A., Calò F., A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements, Applied Sciences, 2017, Vol. 7, No. 12, Article 1264, 39 p., DOI: 10.3390/app7121264.
- Rosen P. A., Hensley S., Chen C., Measurement and mitigation of the ionosphere in L-band interferometric SAR data, 2010 IEEE Radar Conf., IEEE, 2010, pp. 1459–1463, DOI: 10.1109/RADAR.2010.5494385.
- Sandwell D. T., Myer D., Mellors R. et al., Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father’s Day intrusion at Kilauea, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 11, pp. 3524–3534, DOI: 10.1109/TGRS.2008.2000634.
- Velez M. L., Euillades P., Caselli A., Blanco M., Díaz J. M., Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm, J. Volcanology and Geothermal Research, 2011, Vol. 202, No. 1–2, pp. 117–126, DOI: 10.1016/j.jvolgeores.2011.01.012.
- Zelenin E., Kozhurin A., Ponomareva V., Portnyagin M., Tephrochronological dating of paleoearthquakes in active volcanic arcs: A case of the Eastern Volcanic Front on the Kamchatka Peninsula (northwest Pacific), J. Quaternary Science, 2020, Vol. 35, pp. 49–361, DOI: 10.1002/jqs.3145.