ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 285-297

Long-term variations of ionization drift velocities over the south of Eastern Siberia

M.A. Chernigovskaya 1 , D.S. Khabituev 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 14.06.2023
DOI: 10.21046/2070-7401-2023-20-3-285-297
Based on statistical analysis of a large array of archival experimental data on the dynamic regime of the ionosphere over Irkutsk, statistical long-term characteristics of the horizontal drift of ionization irregularities over the region of the south of Eastern Siberia have been obtained. The measurements were carried out by radiophysical spaced-receiver method with a small base of the radio signal reflected from the ionosphere during vertical ground-based radio sounding in 1958–1982. The analysis of the data of long-term measurements confirmed the obvious differences in the nature of the dynamic regime of the lower and upper ionosphere. It is shown that the motion of ionization in the zonal direction is more regular than the meridional drift. The characteristic seasonal features of variations in the amplitudes and directions of horizontal drift motions at altitudes E and F of the ionosphere regions are determined.
Keywords: ionospheric dynamics, spaced-receiver method, long-term variations, seasonal variations, lower and upper ionosphere, statistical data analysis
Full text

References:

  1. Danilov A. D., Konstantinova A. V., Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review), Geomagnetizm i Aeronomiya, 2020, Vol. 60, Issue 4, pp. 397–420, DOI: 10.1134/S0016793220040040.
  2. Kazimirovsky E. S., Kokourov V. D., Dvizheniya v ionosphere (Motions in the ionosphere), Novosibirsk: Nauka, 1979, pp. 68–97 (in Russian).
  3. Perevalova N. P., Oinats A. V., Morfologiya nochnykh srednemasshtabnykh peremeshchayushchikhsya ionosfernykh vozmushchenii v sredneshirotnoi oblasti F (obzor sovremennykh predstavlenii) (Morphology of nighttime medium-scale travelling ionospheric disturbances in the mid-latitude F region (review of current concepts), Irkutsk: Izd. IGU, 2020, 84 p. (in Russian).
  4. Petrukhin V. F., Horizontal drift measurements (metod D1), In: Institut solnechno-zemnoi fiziki: sozdanie i razvitie (Institute of Solar-Terrestrial Physics: Formation and Development), G. A. Zherebtsov (ed.), Novosibirsk: Izd. SO RAN, 2015, pp. 306–312 (in Russian).
  5. Polyakov V. M., Shchepkin L. A., Kazimirovsky E. S., Kokourov V. D., Ionosfernye protsessy (Ionospheric processes), Novosibirsk: Nauka, 1968, 535 p. (in Russian).
  6. Tolstikov M. V., Oinats A. V., Artamonov M. F., Medvedeva I. V., Ratovsky K. G., Statistical relation of traveling ionospheric disturbances with neutral wind and disturbances in the stratosphere, Solar-Terrestrial Physics, 2022, Vol. 8, Issue 4, pp. 78–88, DOI: 10.12737/stp-84202208.
  7. Khabituev D. S., Chernigovskaya M. A., Retrospective analysis of long-term regional features of the dynamic regime of the ionosphere over the south of Eastern Siberia, Solar-Terrestrial Physics, 2023, V. 9. (In press.)
  8. Cao C., Chen Y.-H., Rao J., Liu S.-M., Li S.-Y., Ma M.-H., Wang Y.-B., Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses, Atmosphere, 2019, Vol. 10, Art. No. 519, DOI: 10.3390/atmos10090519.
  9. Chernigovskaya M. A., Shpynev B. G., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., Ionospheric Response to Winter Stratosphere/Lower Mesosphere Jet Stream in the Northern Hemisphere as Derived from Vertical Radio Sounding Data, J. Atmosperic and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 126–136, DOI: 10.1016/j.jastp.2017.08.033.
  10. Hedin A. E., Buonsanto M. J., Codrescu M., Duboin M.-L., Fesen C. G., Hagan M. E., Miller K. L., Sipler D. P., Solar activity variations in mid-latitude thermospheric meridional winds, J. Geophysical Research, 1994, Vol. 99, No. A9, pp. 17601–17608.
  11. Hocke K., Schlegel K., A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Annales Geophysicae, 1996, Vol. 14, pp. 917–940, DOI: 10.1007/s00585-996-0917-6.
  12. Hu J., Ren R., Xu H., Occurrence of Winter Stratospheric Sudden Warming Events and the Seasonal Timing of Spring Stratospheric Final Warming, J. Atmospheric Sciences, 2014, Vol. 71, pp. 2319–2334, DOI: 10.1175/JAS-D-13-0349.1.
  13. Igi S., Oliver W. L., Ogawa T., Solar cycle variations of the thermospheric meridional wind over Japan derived from measurements of hmF2, J. Geophysical Research, 1999, Vol. 104, No. A10, pp. 22427–22431.
  14. Kanzawa H., The Behavior of Mean Zonal Wind and Planetary-Scale Disturbances in the Troposphere and Stratosphere during the 1973 Sudden Warming, J. Meteorological Society of Japan, 1980, Vol. 58, No. 5, pp. 329–355.
  15. Kazimirovsky E. S., Coupling from below as a source of ionospheric variability: a review, Annales Geophysicae, 2002, Vol. 45, No. 1, pp. 11–29, DOI: 10.4401/AG-3482.
  16. Kazimirovsky E. S., Kokourov V. D., Vergasova G. V., Dynanical climatology of the upper mesosphere, lower thermosphere and ionosphere, Surveys in Geophysics, 2006, Vol. 27, pp. 211–255, DOI: 10.1007/s10712-005-3819-3.
  17. Laštovička J., Long-Term Changes in Ionospheric Climate in Terms of foF2 (Review), Atmosphere, 2022, Vol. 13, Art. No. 110, DOI: 10.3390/atmos13010110.
  18. Liu L. B., Wan W. X., Chen Y. D., Le H. J., Solar activity effects of the ionosphere: A brief review, Chinese Science Bull., 2011, Vol. 56, pp. 1202−1211, DOI: 10.1007/s11434-010-4226-9.
  19. Oinats A. V., Nishitani N., Ponomarenko P., Berngardt O. I., Ratovsky K. G., Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data, Earth, Planets and Space, 2016, Vol. 68, Art. No. 8, DOI: 10.1186/s40623-016-0390-8.
  20. Rishbeth H., Long-term changes in the ionosphere, Advances in Space Research, 1997, Vol. 20, No. 11, pp. 2149–2155, https://doi.org/10.1016/S0273-1177(97)00607-8.
  21. Shcherbakov A. A., Medvedev A. V., Kushnarev D. S., Tolstikov M. V., Alsatkin S. S., Calculation of meridional neutral winds in the middle latitudes from the Irkutsk Incoherent Scatter Radar, J. Geophysical Research: Space Physics, 2015, Vol. 120, No. 12, pp. 10851–10863, DOI: 10.1002/2015JA021678.
  22. Shpynev B. G., Churilov S. M., Chernigovskaya M. A., Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 201–215, DOI: 10.1016/j.jastp.2015.07.005.
  23. Vincent R. A., Gravity wave coupling from below: A review, Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symp., Tokyo: TERRAPUB, 2009, pp. 279–293.
  24. Yasyukevich A. S., Chernigovskaya M. A., Shpynev B. G., Khabituev D. S., Yasyukevich Y. V., Features of Winter Stratosphere Small-Scale Disturbance during Sudden Stratospheric Warmings, Remote Sensing, 2022, Vol. 14, Art. No. 2798, DOI: 10.3390/rs14122798.
  25. Yiğit E., Koucká Knížová P., Georgieva K., Ward W., A review of vertical coupling in the Atmosphere-Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmospheric and Solar-Terrestrial Physics, 2016, Vol. 141, pp. 1–12, DOI: 10.1016/j.jastp.2016.02.011.