Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 176-192
Analysis of the influence of species composition, projective cover, and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements
S.S. Shinkarenko
1 , S.A. Bartalev
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 15.05.2023
DOI: 10.21046/2070-7401-2023-20-3-176-192
The intensification of pasture degradation in the southern European part of Russia in recent years, caused by unfavorable hydrothermal conditions and unregulated livestock numbers, requires development of methods for determining the capacity of forage lands using remote sensing techniques. Spectral reflectance properties of vegetation are determined by its species, structural, phenological, biophysical, and biochemical characteristics. However, the influence of these indicators on spectral response has regional specificity, as soil cover plays a significant role. Therefore, it is important that studies of spectral reflectance properties cover many types of vegetation. This study is dedicated to determining the spectral reflectance properties of vegetation in natural zonal pastures in the southern European part of Russia based on geobotanical research and field spectrometry using the PSR 1100f instrument in the range of 320–1100 nm. Ground-based work was carried out in May (the period of maximum green vegetation mass) from 2020–2022 in the natural zonal pastures of the Astrakhan, Volgograd regions, Stavropol Krai, the Republics of Dagestan and Kalmykia. Significant differences were found between sod-forming grasses, semi-shrubs, and annual plants in the visible and near-ultraviolet ranges of the spectrum. Changes in projective cover under other equal conditions significantly affect spectral properties in the range of 660–670 nm, which is consistent with the results of other researchers. Vegetation indices were identified that are most suitable for determining projective cover and above-ground biomass of pasture phytocenoses dominated by different species. Further research will allow for the transition from point measurements of spectral reflectance and structural characteristics of vegetation to satellite data of various spatial resolutions.
Keywords: arid landscapes, pasture vegetation, spectrometry, vegetation indices
Full textReferences:
- Andrianova Yu. E., Tarchevskii I. A., Khlorofill i produktivnost’ rastenii (Chlorophyll and plant productivity), Moscow: Nauka, 2000, 135 p. (in Russian).
- Bartalev S. A., Egorov V. A., Zharko V. O., Lupyan E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
- Breido M. D., Zhirin V. M., Bartalev S. A., Bakhtinova E. V., Identification of forage resources features in desert grazing from aerospace data, Issledovanie Zemli iz kosmosa, 1989, No. 3, pp. 66–76 (in Russian).
- Vinogradov B. V., Study of indicators for monitoring desertification in the South of Russia, Aridnye ekosistemy, 1996, Vol. 2, No. 4, pp. 38–54 (in Russian).
- Eroshenko F. V., Bartalev S. A., Storchak I. G., Plotnikov D. E., The possibility of winter wheat yield estimation based on vegetation index of photosynthetic potential derived from remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 99–112 (in Russian), DOI: 10.21046/2070-7401-2016-13-23-99-112.
- Eroshenko F. V., Bartalev S. A., Lapenko N. G., Samofal E. V., Storchak I. G., Capabilities for rangelands state and degradation assessment using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 53–66 (in Russian), DOI: 10.21046/2070-7401-2018-15-7-53-66.
- Kononova N. A., Larko A. A., Emelyanov D. V., Botvich I. Yu., Assessment of hay lands based on ground-based spectrometry (on the example of agricultural land of the Krasnoyarsk region), Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2019, No. 2(143), pp. 31–37 (in Russian).
- Kremneva O. Yu., Tutubalina O. V., Sereda I. I., Danilov R. Yu., Zimin M. V., Kurilov A. A., Studies of changes in the spectral characteristics of winter wheat varieties depending on the degree of infection with pathogens, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 149–161 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-149-161.
- Kul’tiasov I. M., Ekologiya rastenii (Ecology of plants), Moscow: MGU Publ. House, 1982, 381 p. (in Russian).
- Lazareva V. G., Bananova V. A., Nguen V. D., Mapping the vegetation of the plain of the Sarpinsky lowland (Kalmykia) using remote sensing and GIS, Uspekhi sovremennogo estestvoznaniya, 2017, No. 12, pp. 178–183 (in Russian).
- Nemtseva L. D., Bespalova L. A., Golubeva E. I., Mikhailov S. I., Assessment of the status of vegetation cover of dry steppe landscapes under the conditions of cattle grazing applying the methods of remote sensing of The Earth, Trudy Yuzhnogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, Vol. 7, pp. 151–164 (in Russian), DOI: 10.23885/1993-6621-2018-7-151-164.
- Rachkulik V. I., Sitnikova M. V., Otrazhatel’nye svoistva i sostoyanie rastitel’nogo pokrova (Reflective properties and the state of vegetation cover), Leningrad: Gidrometeoizdat, 1981, 287 p. (in Russian).
- Terekhin E. A., Assessment the spatial-temporal changes in green phytomass of agricultural vegetation using spectral response, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 138–148 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-138-148.
- Titkova T. B., Zolotokrylin A. N., Monitoring of lands affected by desertification in the Republic of Kalmykia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 130–141 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-130-141.
- Shinkarenko S. S., Changes in spectral reflectance characteristics of the Northern Caspian zonal landscapes under pyrogenic influence, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 192–206 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-192-206.
- Shinkarenko S. S., Bartalev S. A. (2020a), Consequences of dust storms in the south of the European part of Russia in September – October 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 270–275 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-270-275.
- Shinkarenko S. S., Bartalev S. A. (2020b), NDVI seasonal dynamics of the North Caspian pasture landscapes according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 179–194 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-179-194.
- Shinkarenko S. S., Bartalev S. A., Assessment of desertification area in the south of the European part of Russia in 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 291–297 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-291-297.
- Shinkarenko S. S., Berdengalieva A. N., Bartalev S. A., Doroshenko V. V. (2022a), Satellite monitoring of desertification processes in the south of European Russia in 2019–2022, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 319–327 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-319-327.
- Shinkarenko S. S., Doroshenko V. V., Berdengalieva A. N. (2022b), Burned areas dynamics in zonal landscapes of the South-East of The European part of Russia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2022, Vol. 86, No. 1, pp. 122–133 (in Russian), DOI: 10.31857/S2587556622010113.
- Bayat B., Van der Tol C., Verhoef W., Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion, Remote Sensing, 2016, Vol. 8, No. 7, Art. No. 557, DOI: 10.3390/rs8070557.
- Bazzo C. O. G., Kamali B., Hütt C., Bareth G., Gaiser T., A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV, Remote Sensing, 2023, Vol. 15, No. 3, Art. No. 639, DOI: 10.3390/rs15030639.
- Conti L., Malavasi M., Galland T., Komarek J., Lagner O., Carmona C. P., de Bello F., Rocchini D., Simova P., The relationship between species and spectral diversity in grassland communities is mediated by their vertical complexity, Applied Vegetation Science, 2021, Vol. 24, Art. No. e12600, DOI: 10.1111/avsc.12600.
- Crippen R. E., Calculating the vegetation index faster, Remote Sensing of Environment, 1990, Vol. 34, Iss. 1, pp. 71–73, DOI: 10.1016/0034-4257(90)90085-Z.
- Fassnacht F. E., Mullerova J., Conti L., Malavasi M., Schmidtlein S., About the link between biodiversity and spectral variation, Applied Vegetation Science, 2021, Vol. 24, Art. No. e126643, DOI: 10.1111/avsc.12643.
- Gunin P. D., Danzhalova E. V., Bazha S. N., Dedkov V. P., Zolotokrylin A. N., Kazantseva T. I., NDVI for Monitoring of the State of Steppe and Desert Ecosystems of the Gobi, Arid Ecosystems, 2019, Vol. 9, No. 3, pp. 179–186, DOI: 10.1134/S207909611903003X.
- Guo Y., Mokany K., Ong C., Moghadam P., Ferrier S., Levick S. R., Plant species richness prediction from DESIS hyperspectral data: A comparison study on feature extraction procedures and regression models, ISPRS J. Photogrammetry and Remote Sensing, 2023, Vol. 1, pp. 120–133, DOI: 10.1016/j.isprsjprs.2022.12.028.
- Hacker P. W., Coops N. C., Laliberte E., Michaletz S. T., Variations in accuracy of leaf functional trait prediction due to spectral mixing, Ecological Indicators, 2022, Vol. 136, Art. No. 108687, DOI: 10.1016/j.ecolind.2022.108687.
- Kothari S., Beauchamp-Rioux R., Blanchard F., Crofts A. L., Girrd A., Guilbeault-Mayers X., Hacker P. W., Pardo J., Schweiger A. K., Demers-Thibeault S., Bruneau A., Coops N. C., Kalacska M., Vellend M., Laliberte E., Predicting leaf traits across functional groups using reflectance spectroscopy, New Phytologist, 2023, Vol. 238, pp. 549–566, DOI: 10.1111/nph.18713.
- Kulik K. N., Rulev A. S., Yuferev V. G., Geoinformation analysis of desertification dynamics in the territory of Astrakhan oblast, Arid Ecosystems, 2015, Vol. 5, No. 3, pp. 134–141, DOI: 10.1134/S2079096115030087.
- Kulik K. N., Petrov V. I., Yuferev V. G., Tkachenko N. A., Shinkarenko S. S., Geoinformational Analysis of Desertification of the Northwestern Caspian, Arid Ecosystems, 2020, Vol. 10, No. 2, pp. 98–105, DOI: 10.1134/S2079096120020080.
- Lu S., Lu F., You W., Wang Z., Liu Yu., Omasa K., A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons, Plant Methods, 2018, Vol. 14, Art. No. 15, DOI: 10.1186/s13007-018-0281-z.
- Manaenkov A. S., Rybashlykova L. P., Increasing the Efficiency of Plant-Cover Restoration in the Modern Focus of Deflation on Pastures of the Northwestern Caspian Region, Arid Ecosystems, 2020, Vol. 10, No. 4, pp. 358–367, DOI: 10.1134/S2079096120040149.
- Marabel M., Alvarez-Taboada F., Spectroscopic determination of aboveground biomass in grasslands using spectral transformations, Support Vector Machine and Partial Least Squares Regression, Sensors, 2013, Vol. 13, No. 8, pp. 10027–10051, DOI: 10.3390/s130810027.
- Peng Y., Fan M., Bai L., Sang W., Feng J., Zhao Z., Tao Z., Identification of the Best Hyperspectral Indices in Estimating Plant Species Richness in Sandy Grasslands, Remote Sensing, 2019, Vol. 11, No. 5, Art. No. 588, DOI: 10.3390/rs11050588.
- Quang Q., Yuan Qz., Han Jc., Leng R., Wang Yu., Zhu K., Lin S., Ping R., A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau, J. Mountain Science, 2020, Vol. 17, pp. 1423–1437, DOI: 10.1007/s11629-020-5986-6.
- Scheer H., Chlorophylls: A Personal Snapshot, Molecules, 2022, Vol. 27, No. 3, Art. No. 1093, DOI: 10.3390/molecules27031093.
- Shen M., Tang Y., Klein J., Zhang P., Gu S., Shimono A., Chen J., Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau, J. Plant Ecology, 2008, Vol. 1, Issue 4, pp. 247–257, DOI: 10.1093/jpe/rtn025.
- Sid’ko A. F., Botvich I. Y., Pis’man T. I., Shevyrnogov A. P., Estimation of the chlorophyll content and yield of grain crops via their chlorophyll potential, Biophysics, 2017, Vol. 62, No. 3, pp. 456–459, DOI: 10.1134/S0006350917030198.
- Thornley R. H., Verhoef A., Gerard F. F., White K., The Feasibility of Leaf Reflectance-Based Taxonomic Inventories and Diversity Assessments of Species-Rich Grasslands: A Cross-Seasonal Evaluation Using Waveband Selection, Remote Sensing, 2022, Vol. 14, No. 10, Art. No. 2310, DOI: 10.3390/rs14102310.
- Thornley R. H., Gerard F. F., White K., Verhoef A., Prediction of Grassland Biodiversity Using Measures of Spectral Variance: A Meta-Analytical Review, Remote Sensing, 2023, Vol. 15, Art. No. 668, DOI: 10.3390/rs15030668.
- Tucker J., Asymptotic nature of grass canopy spectral reflectance, Applied Optics, 1977, Vol. 16, pp. 1151–1156, DOI: 10.1364/AO.16.001151.
- Vlasenko M. V., Kulik A. K., Salugin A. N., Evaluation of the Ecological Status and Loss of Productivity of Arid Pasture Ecosystems of the Sarpa Lowland, Arid Ecosystems, 2019, Vol. 9, No. 1, pp. 273–281, DOI: 10.1134/S2079096119040097.
- Wang Z., Ma Y., Zhang Y., Shang J., Review of Remote Sensing Applications in Grassland Monitoring, Remote Sensing, 2022, Vol. 14, No. 12, Art. No. 2903, DOI: 10.3390/rs14122903.
- Yuferev V. G., Tkachenko N. A., Sinelnikova K. P., Spectral Characteristics of Desertified Black-Earth Pastures, Arid Ecosystems, 2022, Vol. 12, No. 1, pp. 54–60, DOI: 10.1134/S2079096122010152.
- Zolotokrylin A. N., Titkova T. B., A new approach to the monitoring of desertification centers, Arid Ecosystems, 2011, Vol. 1, No. 3, pp. 125–140, DOI: 10.1134/S2079096111030127.