ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 19-34

Atmospheric correction in the Arctic sea ice studies with AMSR2 data

E.V. Zabolotskikh 1 , S.M. Azarov 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 07.06.2023
DOI: 10.21046/2070-7401-2023-20-3-19-34
In this paper we propose a new method for atmospheric correction in the sea ice studies with the data of the Advanced Microwave Scanning Radiometer 2 (AMSR2). The method is based on the results of numerical simulation of brightness temperatures (Tb) of microwave radiation of the atmosphere-sea ice system in the Arctic and on analysis of AMSR2 measurements at a frequency of 89 GHz over the Arctic sea ice. The ERA5 reanalysis data serve as input data for numerical calculations. The basis of the method is estimation of the atmospheric optical thickness at a frequency of 89 GHz from the polarization difference measurements and the retrieval of the atmospheric microwave radiation parameters at all the other frequencies with neural networks algorithms trained on the results of Tb simulation. The numerical simulation is based on the solution of microwave radiation transfer equation under nonscattering conditions. Thus, the method is applicable for atmospheric correction in a dry winter atmosphere from November to March. Application of the method to AMSR2 data requires the usage of a previously developed algorithm for total atmospheric water vapor content retrieval, having high accuracy both over open water and over the Arctic sea ice. The application of the approach will make it possible to study the Arctic sea ice using the AMSR2 data without atmospheric influence, as well as to improve the accuracy of sea ice concentration retrievals without involving any additional data.
Keywords: Arctic, atmospheric correction, satellite passive microwave remote sensing, sea ice, numerical modeling, AMSR2
Full text

References:

  1. Zabolotskikh E. V., Khvorostovsky K. S., Zhivotovskaya M. A., Lvova E. V., Azarov S. M., Balashova E. A., Satellite microwave remote sensing of the Arctic sea ice. Review, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 9–34 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-9-34.
  2. Matrosov S. Yu., Shulgina E. M., Scattering and attenuation of microwave radiation by precipitation, Trudy Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 1982, Issue 448, pp. 85–94 (in Russian).
  3. Andersen S., Tonboe R., Kaleschke L., Heygster G., Pedersen L. T., Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophysical Research, 2007, Vol. 112, No. C8, DOI: 10.1029/2006JC003543.
  4. Atkinson P. M., Tatnall A. R. L., Introduction Neural networks in remote sensing, Intern. J. Remote Sensing, 1997, Vol. 18, No. 4, pp. 699–709, DOI: 10.1080/014311697218700.
  5. Beitsch A., Kern S., Kaleschke L., Comparison of SSM/I and AMSR-E Sea Ice Concentrations with ASPeCt Ship Observations around Antarctica, IEEE Trans. Geoscienca and Remote Sensing, 2015, Vol. 53, No. 4, pp. 1985–1996, DOI: 10.1109/TGRS.2014.2351497.
  6. Bobylev L. P., Zabolotskikh E. V., Mitnik L. M., Mitnik M. L., Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 1, pp. 283–294, DOI: 10.1109/TGRS.2009.2028018.
  7. Comiso J. C., Hall D. K., Climate trends in the Arctic as observed from space, Wiley Interdisciplinary Reviews: Climate Change, 2014, Vol. 5, No. 3, pp. 389–409, DOI: 10.1002/wcc.277.
  8. Comiso J. C., Cavalieri D. J., Markus T., Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, No. 2, pp. 243–252, DOI: 10.1109/TGRS.2002.808317.
  9. Comiso J. C., Parkinson C. L., Gersten R., Stock L., Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, 2008, Vol. 35, Issue 1, Art. No. L01703, DOI: 10.1029/2007GL031972.
  10. Galligani V. S., Prigent C., Defer E., Jimenez C., Eriksson P., The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurements, J. Geophysical Research: Atmospheres, 2013, Vol. 118, No. 11, pp. 5667–5678, DOI: 10.1002/jgrd.50431.
  11. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., The ERA5 global reanalysis, Quarterly J. Royal Meteorological Society, 2020, Vol. 146, No. 730, pp. 1999–2049, DOI: 10.1002/qj.3803.
  12. Ivanova N., Johannessen O. M., Pedersen L. T., Tonboe R. T., Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246, DOI: 10.1109/TGRS.2014.2310136.
  13. Ivanova N., Pedersen L. T., Tonboe R. T., Kern S., Heygster G., Lavergne T., Sørensen A., Saldo R., Dybkjær G., Brucker L., Shokr M., Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges, Cryosphere, 2015, Vol. 9, pp. 1797–1817, DOI: 10.5194/tcd-9-1269-2015.
  14. Kaleschke L., Lüpkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G., SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Canadian J. Remote Sensing, 2001, Vol. 27, No. 5, pp. 526–537, DOI: 10.1080/07038992.2001.10854892.
  15. Katsumata M., Uyeda H., Iwanami K., Liu G., The response of 36- and 89-GHz microwave channels to convective snow clouds over ocean: Observation and modeling, J. Applied Meteorology, 2000, Vol. 39, No. 12, pp. 2322–2335, DOI: 10.1175/1520-0450(2000)039<2322:TROAGM>2.0.CO;2.
  16. Kim M.-J., Kulie M. S., O’Dell C., Bennartz R., Scattering of Ice Particles at Microwave Frequencies: A Physically Based Parameterization, J. Applied Meteorology and Climatology, 2007, Vol. 46, No. 5, pp. 615–633, DOI: 10.1175/JAM2483.1.
  17. Kwok R. G., Cunningham F., Wensnahan M., Rigor I., Zwally H. J., Yi D., Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, J. Geophysical Research, 2009, Vol. 114, No. C7, DOI: 10.1029/2009JC005312.
  18. Li J. F., Lee S., Ma H.-Y., Stephens G., Guan B., Assessment of the cloud liquid water from climate models and reanalysis using satellite observations, Terrestrial Atmospheric and Oceanic Science, 2018, Vol. 29, No. 6, pp. 653–678, DOI: 10.3319/TAO.2018.07.04.01.
  19. Mathew N., Heygster G., Melsheimer C., Surface emissivity of the Arctic sea ice at AMSR-E frequencies, IEEE Trans. Geoscience and Remote Sensing, 2009, Vol. 47, No. 12, pp. 4115–4124, DOI: 10.1109/TGRS.2009.2023667.
  20. Meier W. N., Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 6, pp. 1324–1337, DOI: 10.1109/TGRS.2005.846151.
  21. Meissner T., Wentz F. J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026, DOI: 10.1109/TGRS.2011.2179662.
  22. Shupe M. D., Uttal T., Matrosov S. Yu., Frisch A. S., Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment, J. Geophysical Research, 2001, Vol. 106, No. D14, pp. 15015–15028, DOI: 10.1029/2000JD900476.
  23. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research: Oceans 1978–2012, 2008, Vol. 113, No. C2, DOI: 10.1029/2005JC003384.
  24. Stroeve J. C., Serreze M. C., Holland M. M., Kay J. E., Malanik J., Barrett A. P., The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climate Change, 2012, Vol. 110, No. 3–4, pp. 1005–1027, DOI: 10.1007/s10584-011-0101-1.
  25. Svendsen E., Kloster K., Farrelly B., Johannessen O. M., Johannessen J. A., Campbell W. J., Gloersen P., Cavalieri D., Mätzler C., Norwegian Remote Sensing Experiment: Evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research, J. Geophysical Research: Oceans 1978–2012, 1983, Vol. 88, No. C5, pp. 2781–2791, DOI: 10.1029/JC088iC05p02781.
  26. Svendsen E., Matzler C., Grenfell T. C., A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Intern. J. Remote Sensing, 1987, Vol. 8, No. 10, pp. 1479–1487, DOI: 10.1080/01431168708954790.
  27. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Ivanov V. V., Boyarskii D. A., Alexeeva T. A., Komarova N. Yu., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Advances in Space Research, 2015, Vol. 56, No. 8, pp. 1578–1589, DOI: 10.1016/j.asr.2015.07.009.
  28. Vihma T., Effects of Arctic sea ice decline on weather and climate: A review, Surveys in Geophysics, 2014, Vol. 35, No. 5, pp. 1175–1214, DOI: 10.1007/s10712-014-9284-0.
  29. Wentz F. J., Meissner T., Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations, Radio Science, 2016, Vol. 51, No. 5, pp. 381–391, DOI: 10.1002/2015RS005858.
  30. Zabolotskikh E., Azarov S., Wintertime Emissivities of the Arctic Sea Ice Types at the AMSR2 Frequencies, Remote Sensing, 2022, Vol. 14, No. 23, Art. No. 5927, DOI: 10.3390/rs14235927.
  31. Zabolotskikh E. V., Chapron B., New Geophysical Model Function for Ocean Emissivity at 89 GHz Over Arctic Waters, IEEE Geosci. Remote Sens. Letters, 2018, Vol. 16, No. 4, pp. 573–576, DOI: 10.1109/LGRS.2018.2876731.
  32. Zabolotskikh E. V., Chapron B., Consideration of Atmospheric Effects for Sea Ice Concentration Retrieval from Satellite Microwave Observations, Russian Meteorology and Hydrology, 2019, Vol. 44, No. 2, pp. 124–129, DOI: 10.3103/S1068373919020055.
  33. Zabolotskikh E. V., Khvorostovsky K. S., Chapron B., An Advanced Algorithm to Retrieve Total Atmospheric Water Vapor Content From the Advanced Microwave Scanning Radiometer Data Over Sea Ice and Sea Water Surfaces in the Arctic, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 58, No. 5, pp. 3123–3135, DOI: 10.1109/TGRS.2019.2948289.