ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 301-306

Multivariate data analysis of variations of Earth’s atmosphere muons

V.L. Yanchukovsky 1 , A.Yu. Belinskaya 1 
1 Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
Accepted: 24.04.2023
DOI: 10.21046/2070-7401-2023-20-3-301-306
The data of continuous observations of muon telescopes of cosmic rays are subject to correction for variations of atmospheric origin: barometric and temperature effects. The temperature effect of muon intensity, unlike the barometric one, is determined by many parameters characterizing the state of the atmosphere from the generation layer to the muon registration level (temperature and mass distribution). Temperature variations of different layers of the atmosphere are correlated, so the use of multivariate regression methods in assessing the temperature effect for muons is not correct. The possibilities of regression methods on the main components (RGC) and the method of projections on hidden structures (PLC) in the study of the temperature effect of muons in the atmosphere are analyzed. The ways of choosing the optimal value of the number of principal components are considered. Using the PLC algorithm, the relationship between muon intensity variations and atmospheric temperature changes on 16 isobars was estimated.
Keywords: cosmic rays, atmosphere, muons, temperature effect, regression method on principal components, projection method on hidden structures
Full text

References:

  1. Aivazyan S. A., Bukhshtaber V. M., Enyukov I. S., Meshalkin L. D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti (Applied statistics. Classification and dimensionality reduction), Moscow: Finansy i statistika, 1989, 607 p. (in Russian).
  2. Kuzmenko V. S., Yanchukovsky V. L., Determination of density of temperature coefficients for the Earth’s atmosphere muons, Solar-Terrestrial Physics, 2015, Vol. 1, Issue 2, pp. 91–96 (in Russian), DOI: 10.12737/10403.
  3. Pomerantsev A. L., Khemometrika v Excel: uchebnoe posobie (Chemometrics in Excel: a tutorial), Tomsk: TSU Publ. House, 2014, 435 p. (in Russian).
  4. Esbensen K. H., Multivariate data analysis in practice, Oslo: CAMO Process AS, 2002, 589 p.
  5. Dayal B. S., McGregor J. F., Improved PLS Algorithms, J. Chemometrics, 1997, Vol. 11, pp. 73–65.
  6. De Jong S., Ter Braak C., Comments on the PLS kernel algorithm, J. Chemometrics, 1994, Vol. 8, pp. 169–174.
  7. Gorban A. N., Kegl B., Wunsch D., Zinovyev A. Y., Principal Manifolds for Data Visualization and Dimension Reduction: Lecture Notes in Computational Science and Engineering, Berlin; Heidelberg; New York: Springer, 2007, 340 p.
  8. Jolliffe I. T., Principal Component Analysis. Series in Statistics, New York: Springer, 2002, 487 p.
  9. Lindgren F., Geladi P., Wold S., The kernel algorithm for PLS, J. Chemometrics, 1993, Vol. 7, pp. 45–59.