ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 104-115

Algorithm for calculation of basic surfaces based on digital elevation model in SAGA GIS software (on the example of Arkhangelsk Region)

E.V. Polyakova 1 , Yu.G. Kutinov 1 , A.L. Mineev 1 , Z.B. Chistova 1 
1 N. Laverov Federal Center for Integrated Arctic Research UrB RAS, Arkhangelsk, Russia
Accepted: 23.06.2023
DOI: 10.21046/2070-7401-2023-20-3-104-115
The article presents a step-by-step algorithm for constructing basic surfaces in the SAGA GIS software. The territory of Arkhangelsk Region, which is part of East European Plain, is chosen as the object of research. The source material for the calculations is a digital elevation model (DEM) built on the basis of ASTER GDEM v2 with a spatial resolution of about 30 m. Reference surfaces are calculated based on the DEM (after its hydrological correction) and a map of stream orders from 1 to N. Valleys of orders 1 and 2 correspond to ravines, gullies and temporary (seasonal) streams. In flat areas and in temperate climates, river valleys usually have a constant stream, starting from orders 3 and 4. The maximum stream order equal to 10 on the territory of Arkhangelsk Region corresponds to the Northern Dvina River. Morphometric surfaces are calculated to evaluate the neotectonic movements of the Earth’s crust. Basic surface maps are static maps; they make it possible to quantify the amplitudes of neotectonic movements without taking into account their temporal development.
Keywords: digital elevation model, catchment area, channel network, stream order, basic surfaces, Arkhangelsk Region
Full text

References:

  1. Drobinina E. V., Optimization of office studies of the engineering surveys results using GIS, Materialy 16-i Obshcherossiiskoi nauchno-prakticheskoi konferentsii izyskatel’skikh organizatsii ‘‘Perspektivy razvitiya inzhenernykh izyskanii v stroitel’stve v Rossiiskoi Federatsii’’ (Proc. 16th All-Russia Scientific and Practical Conf. Surveying Organizations “Prospects for Development of Engineering Surveys in Construction in the Russian Federation”), Moscow: Geomarketing, 2021, pp. 93–99 (in Russian).
  2. Ermolaev O. P., Semenov F. V., Use of digital terrain models in morphometric analysis of tectonic structures and prospecting of placers of alluvial genesis, Geography and Natural Resources, 2014, Vol. 35, No 1, pp. 82–87, DOI: 10.1134/S1875372814010120.
  3. Koshel S. M., Entin A. L., Catchment area derivation from gridded digital elevation models using the flowline-tracing approach, Vestnik Moskovskogo universiteta. Ser. 5. Geografiya, 2017, No. 3, pp. 42–50 (in Russian).
  4. Kuznetsov A. S., An Energy approach for geomorphological mapping, Sovremennye problemy nauki i obrazovaniya, 2014, No. 6, pp. 1688–1688 (in Russian).
  5. Kurlovich D. M., Neotectonic structures and neotectonically active linear zones of the Belarusian Poozerya, Vestnik Belorusskogo gosudarstvennogo universiteta. Ser.: Geografiya, 2010, No. 2, pp. 99–105 (in Russian).
  6. Kutinov Yu. G., Mineev A. L., Polyakova E. V., Chistova Z. B., Vybor bazovoi tsifrovoi modeli rel’efa (TsMR) ravninnykh territorii Severa Evrazii i ee podgotovka dlya geologicheskogo raionirovaniya (na primere Arkhangel’skoi oblasti) (The choice of the basic digital elevation model (DEM) of the plain territories of the North of Eurasia and its preparation for geological zoning (on the example of the Arkhangelsk region)), Penza: Sotsiosfera, 2019, 177 p. (in Russian).
  7. Kutinov Yu. G., Mineev A. L., Chistova Z. B., Polyakova E. V., Belenovich T. Ya., Relief energy: calculation, methods, problems, options, Ural’skii geologicheskii zhurnal, 2022, No. 6, Vol. 150, pp. 17–31 (in Russian).
  8. Lastochkin A. N., On the forms of manifestation of discontinuous faults in the relief of the West Siberian Plain and the structural-geomorphological method of their detection, Izvestiya Vsesoyuznogo georgaficheskogo obshchestva, 1971, No. 1, pp. 48–56 (in Russian).
  9. Mineev A. L., Kutinov Yu. G., Chistova Z. B., Polyakova E. V. (2015a), Building the digital elevation model for studying exogenous processes across northern territories of Russian Federation, Prostranstvo i vremya, 2015, No. 3(21), pp. 279–291 (in Russian).
  10. Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B. (2015b), Methodical aspects of creating digital elevation model of the Arkhangelsk region based on ASTER GDEM V.2, Sovremennye problemy nauki i obrazovaniya, 2015, No. 2 (in Russian), https://science-education.ru/129-21949.
  11. Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B., The reliability of a digital elevation model of the Arkhangelsk region for geoecological research, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 58–67, (in Russian), DOI: 10.21046/2070-7401-2018-15-4-58-67.
  12. Mikhailov V. N., Dobrolyubov S. A., Gidrologiya: uchebnik dlya vuzov (Hydrology: a textbook for universities), Moscow, Berlin: Direkt-Media, 2017, 752 p. (in Russian).
  13. Nugmanov I. I., Nugmanova E. V., Chernova I. Yu., Osnovy morfometricheskogo metoda poiska neotektonicheskikh struktur (Fundamentals of the morphometric method for searching for neotectonic structures), Kazan: Kazanskii universitet, 2016, 53 p. (in Russian).
  14. Pogorelov A. V., Dumit Zh. A., Rel’ef basseina r. Kubani: morfologicheskii analiz (Relief of the Kuban River Basin: Morphological Analysis), Moscow: GEOS, 2009, 220 p. (in Russian).
  15. Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B. (2020a), Analysis of the applicability of the ASTER GDEM v2 and ArcticDEM digital elevation models in research on Russia’s Arctic territories, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 117–127 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-117-127.
  16. Polyakova E. V., Mineev A. L., Kutinov Yu. G., Chistova Z. B. (2020b), Assessment of the raw data of the ArcticDEM global model for studies of the northern territories of the Russian Federation, Ural’skii geologicheskii zhurnal, 2020, No. 5(137), pp. 3–17 (in Russian).
  17. Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B., Algorithm for calculating basic surfaces based on the DEM of the Arkhangelsk region for geoecological research, Materialy 19-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 15–19 Nov. 2021, Moscow 2021, p. 324 (in Russian).
  18. Tregub A. I., Zhavoronkin O. V., Morphometry of the Modern Surface and Neotectonic Structure of the VKM Territory, Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser.: Geologiya, 2000, Vol. 9, pp. 19–26 (in Russian).
  19. Filosofov V. P., Osnovy morfometricheskogo metoda poiskov tektonicheskikh struktur (Basics of the morphometric method for searching for tectonic structures), Saratov: Izd. Saratovskogo universiteta, 1975, 232 p. (in Russian).
  20. Chernova I. Yu., Khasanov D. I., Zharkov I. Ya., Bil’danov R. R., Kashirina T. S., Detection and study of zones of the latest movements of the earth’s crust using GIS tools, ArcReview, Moscow: Data+, 2005, No. 1(32), pp. 6–7 (in Russian).
  21. Chernova I. Yu., Nugmanov I. I., Dautov A. N., Application of GIS analytic functions for improvement and development of the structural morphological methods of the neotectonics studies, Geoinformatika, 2010, No. 4, pp. 9–22 (in Russian).
  22. Shevyrev S. L., Neotectonic uplifts and erosion of controlling structures of mnogovershinnoe gold field (Khabarovsk krai) by analysis of remote sensing data, Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser.: Geologiya, 2017, No. 4, pp. 72–78 (in Russian).
  23. Freeman T., Calculating catchment area with divergent flow based on a regular grid, Computers and Geosciences, 1991, Vol. 17, pp. 413–422.
  24. Kiss R., Determination of drainage network in digital elevation models, utilities and limitations, J. Hungarian Geomathematics, 2004, Vol. 2, pp. 17–29.
  25. Lindsay J. B., The Terrain Analysis System: a tool for hydro-geomorphic applications, Hydrological Processes, 2005, Vol. 19, No. 5, pp. 1123–1130, DOI: 10.1002/hyp.5818.
  26. O’Callaghan J. F., Mark D. M., The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing, 1984, Vol. 28(3), pp. 323–344.
  27. Olaya V., Conrad O., Geomorphometry in SAGA, Developments in Soil Science, 2009, Vol. 33, pp. 293–308, DOI: 10.1016/S0166-2481(08)00012-3.
  28. Planchon O., Darboux F., A fast, simple and versatile algorithm to fill the depressions of digital elevation models, Catena, 2002, Vol. 46(2), pp. 159–176, DOI: 10.1016/S0341-8162(01)00164-3.
  29. Quinn P., Beven K., Chevallier P., Planchon O., The prediction of hillslope flow paths for distributed hydrological modelling, Hydrological Processes, 1991, Vol. 5(5), pp. 59–79.
  30. Strahler A. N., Quantitative analysis of watershed geomorphology, Eos, Trans. American Geophysical Union, 1957, Vol. 38, No. 6, pp. 913–920.
  31. Wang L., Liu H., An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling, Intern. J. Geographical Information Science, 2006, Vol. 20(2), pp. 193–213, DOI: 10.1080/13658810500433453.