ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 96-103

Hydrological analysis of a digital elevation model as a tool of karst hazard assessment

E.V. Drobinina 1 
1 Perm State University, Perm, Russia
Accepted: 14.04.2023
DOI: 10.21046/2070-7401-2023-20-3-96-103
The article is devoted to the applicability of hydrological analysis of a digital elevation model (DEM) in karst hazard assessment. DEM hydrological correction with the aim of karst forms interpretation and analysis of neotectonic activity of the territory was carried out in the karst territory within Dobryanskiy district of Perm Krai where carbonate-sulfate karst is developed and surface karst forms are widespread. Using three DEMs: data of Advanced Land Observation Satellite (ALOS-DEM), data of Shuttle Radar Topography Mission (SRTM) and LiDAR-based digital terrain model, an instrumental extraction of drainless depressions was made. The spatial correlation of their location with sinkholes identified during the route survey was then analyzed. Given the geobotanical conditions of the study area, it was noted that the assessment of surface karst by the method of hydrological correction of the DEM at a detailed level is recommended to be carried out with the use of a highly accurate DEM — LiDAR-based digital terrain model, which excludes the influence of vegetation on the analysis result. As a result of the neotectonic activity analysis using DEM, positive (uplifts) and negative (depressions) neotectonic structures were identified. It was marked that karst sinkholes in the study territory prevail in the uplift areas, which confirms the research of karstologists: in karst areas karst forms associate with vaults or apical zones of ancient structures, zones and areas of increased, localized fracturing and water availability of rocks of neotectonic uplifts. According to the results of the analysis, presented graphically, it is possible to identify the ranges of absolute elevation increments of the base surfaces that are potentially karst dangerous and, thus, to zone areas of neotectonic uplifts according to karst danger.
Keywords: digital elevation model, surface karst, karst massif, karst hazard, hydrological correction, morphometric analysis
Full text

References:

  1. Drobinina E. V., Optimisation of cameral geotechnical surveying using GIS, Perspektivy razvitiya inzhenernykh izyskanii v stroitel’stve v Rossiiskoi Federatsii (Prospects for the development of engineering surveys in construction in the Russian Federation), Proc. 16th All-Russia Scientific-Practical Conf. Surveying Organizations, Moscow: Geomarketing Ltd., 2021, pp. 93–99 (in Russian).
  2. Drobinina E. V., Zolotarev D. R., Analysis of engineering geological conditions and variability of fine-grained deposits near sinkholes in the carbonate-sulfate karst areas, Geoecology. Engineering geology, hydrogeology, geocryology, 2022, No. 2, pp. 48–62 (in Russian), DOI: 10.31857/S0869780922020023.
  3. Kataev V. N., Osnovy strukturnogo karstovedeniya (Fundamentals of structural karst science), Perm, 2004, 143 p. (in Russian).
  4. Nugmanov I. I., Nugmanova E. V., Chernova I. Yu., Osnovy morfometricheskogo metoda poiska neotektonicheskikh struktur (Fundamentals of the morphometric method for searching for neotectonic structures), Kazan: Kazan University, 2016, 53 p. (in Russian).
  5. Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B., Geoecological assessment of the probability of activation of karst processes based on digital relief modeling, Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global’nogo izmeneniya klimata “Georisk – 2018” (Analysis, forecast and management of natural risks taking into account global climate change “Georisk-2018”), Proc. X Intern. Scientific-Practical Conf., Vol. 2, N. G. Mavlyanova (ed.), Moscow, 2018, pp. 221–225 (in Russian).
  6. Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B., Belenovich T. Ya., Using the ASTER GDEM v.2 global digital elevation model to identify areas of possible activation of karst processes in the Arkhangelsk region, Scientific Notes of Kazan University. Ser.: Natural Sciences, 2021, Vol. 163, No. 2, pp. 302–319 (in Russian), DOI: 10.26907/2542-064X.2021.2.302-319.
  7. Filosofov V. P., Kratkoe rukovodstvo po morfometricheskomu metodu poiskov tektonicheskikh struktur (A short guide to the morphometric method of searching for tectonic structures), Saratov: Saratov University Press, 1960, 94 p. (in Russian).
  8. Filosofov V. P., Calculation methodology and geological and geomorphological interpretation of terrain dissection coefficient, Problems of morphometry, Saratov: Saratov University Press, 1967, Issue 1, Vol. 2, pp. 112–146 (in Russian).
  9. Khabibullina F. S., Vishnevskii P. V., Metodicheskie rekomendatsii po izucheniyu karsta pri poiskakh i razvedke mestorozhdenii karbonatnykh porod (Methodological recommendations for the study of karst in prospecting and exploration of carbonate deposits), VNII geologii nerudnykh poleznykh iskopaemykh, Kazan, 1987, 97 p. (in Russian).
  10. Colombo R., Vogt J. V., Soille P., Paracchini M. L., de Jager A., Deriving River networks and catchments at the European scale from medium resolution digital elevation data, CATENA, 2007, Vol. 70, Issue 3, pp. 296–305, https://doi.org/10.1016/j.catena.2006.10.001.
  11. de Carvalho Jr. O. A., Guimarães R. F., Montgomery D. R., Gillespie A. R., Gomes R. A. T., Martins É. d. S., Silva N. C., Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil, Remote Sensing, 2014, Vol. 6, Issue 1, pp. 330–351, DOI: 10.3390/rs6010330.
  12. Fiorillo F., Pagnozzi M., Ventafridda G., A model to simulate recharge processes of karst massifs, Hydrological Processes, 2015, Vol. 29, Issue 10, pp. 2301–2314, https://doi. org/10.1002/hyp.10353.
  13. Garas K. L., Madrigal M. F. B., Agot R. D. D., Canlas M. C. M., Manzano L. S. J., Karst depression detection using IFSAR-DEM: A tool for subsidence hazard assessment in Panglao, Bohol, Carsologica Sinica, 2020, Vol. 39, No. 6, pp. 928–936, DOI: 10.11932/karst20200612.
  14. Goldscheider N., Delineation of spring protection zones. Ch. 8, Groundwater Hydrology of Springs, Kresic N., Stevanovic Z. (eds.), Amsterdam: Butterworth-Heinemann, 2010, pp. 305–338.
  15. Goldscheider N., Meiman J., Pronk M., Smart C., Tracer tests in karst hydrogeology and speleology, Intern. J. Speleology, 2008, Vol. 37(1), pp. 27–40, https://doi.org/10.5038/1827-806X.37.1.3.
  16. Leone G., Catani V., Pagnozzi M., Ginolfi M., Testa G., Esposito L., Fiorillo F., Hydrological features of Matese Karst Massif, focused on endorheic areas, dolines and hydroelectric exploitation, J. Maps, 2022, pp. 1–13, DOI: 10.1080/17445647.2022.2144497.
  17. Tarboton D. G., Bras R. L., Rodriguez-Iturbe I., On the Extraction of Channel Networks from Digital Elevation Data, Hydrological Processes, 1991, Vol. 5, Issue 1, pp. 81–100, DOI: 10.1002/hyp.3360050107.