ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 49-58

Pulsed sonar for sea wave parameters retrieval — Part 1: Theoretical models

K.A. Ponur 1 , Yu.A. Titchenko 1 , V.Yu. Karaev 1 , M.S. Ryabkova 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 03.05.2023
DOI: 10.21046/2070-7401-2023-20-3-49-58
Despite the fact that the experiment is the most important stage of scientific research when testing hypotheses and developed models, the possibility of conducting numerical experiments significantly speeds up the process of their verification. Even more popular is the use of numerical simulation at the stage of development, manufacture and testing of a new device. In this case, the numerical experiment makes it possible to evaluate the reliability of the theoretical models used, the accuracy of the processing algorithms, to determine the optimal measurement scheme and, in this case, the sonar parameters. To obtain new information about surface waves, it is proposed to use a multi-frequency underwater acoustic wave gauge and its efficiency can be estimated using numerical simulation (numerical experiment). To describe the shape of the reflected pulse, two analytical models were used: the Brown model and the Karaev model. For the first time, a comparison of the models showed their difference for sonar with a wide antenna pattern. Significant differences in the behavior of the trailing edge of the reflected pulse are because the slope variance of the scattering surface is not included in the Brown model. For the first time, the influence of the radiation wavelength on the shape of the reflected pulse is shown, which will make it possible to use multifrequency systems to measure the intensity of the short-wavelength part of the wave spectrum.
Keywords: quasi-specular scattering, Kirchhoff approximation, scattering of waves on a rough surface, shape of the reflected pulse, sonar, significant wave height, slope variance of large-scale waves, processing algorithm
Full text

References:

  1. Baskakov A. I., Komarov A. A., Mikhailov M. S., Methodological errors of a high-precision airborne radio altimeter operating at low altitudes above the sea surface, Radiophysics and Quantum Electronics, 2017, Vol. 60, No. 6, pp. 467–474, DOI: 10.1007/s11141-017-9815-x.
  2. Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave Scattering from Statistically Rough Surfaces), Moscow: Nauka, 1972, 424 p. (in Russian).
  3. Isakovich M. A., Scattering of waves from a statistically rough surface, Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1952, Vol. 23, No. 3, pp. 305–314 (in Russian).
  4. Karaev V. Yu., Meshkov E. M., Titchenko Yu. A., Underwater acoustic altimeter, Radiophysics and Quantum Electronics, 2014, Vol. 57, No. 7, pp. 488–497. DOI: 10.1007/s11141-014-9531-8.
  5. Ryabkova M. S., Titchenko Yu. A., Karaev V. Yu., Meshkov E. M., Belyaev R. V., Yablokov A. A., Ponur K. A., Baranov V. I., Ocherednik V. V., Determining the Height of Significant Waves by Analyzing the Shape of the Reflected Acoustic Pulse: Acoustic Wave Gauge Measurements in the Black Sea and Comparison with ADCP, Materialy 18-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 18th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 16–20 Nov. 2020, Moscow, 2020, p. 242 (in Russian), https://doi.org/10.21046/18DZZconf-2020a.
  6. Ryabkova M. S., Titchenko Yu. A., Karaev V. Yu., Meshkov E. M., Belyaev R. V., Yablokov A. A., Baranov V. I., Ocherednik V. V., Measurement of statistical characteristics of the sea surface using an underwater acoustic wave gauge in the Black Sea and comparison with ADCP, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Issue 18, No. 2, pp. 189–294 (in Russian), https://doi.org/10.21046/2070-7401-2021-18-2-189-204.
  7. Amarouche L., Thibaut P., Zanife O. Z., Dumont J.-P., Vincent P., Steunou N., Improving the Jason-1 ground retracking to better account for attitude effects, Marine Geodesy, 2004, Vol. 27, pp. 171–197, https://doi.org/10.1080/01490410490465210.
  8. Barric D. E., Rough surface scattering based on the specular point theory, IEEE Trans. AP-16, 1968, Vol. 16, No. 4, pp. 449–554, https://doi.org/10.1109/TAP.1968.1139220.
  9. Baskakov A. I., Komarov A. A., Ruban A. V., Ka M-H., Limiting Accuracy of Height Measurement for a Precision Radar Altimeter in a Low Altitude Flying Vehicle above the Sea Surface, Remote Sensing, 2021, Vol. 13(14), Art. No. 2660, https://doi.org/10.3390/rs13142660.
  10. Brown G., The average impulse response of a rough surface and its applications, IEEE J. Oceanic Engineering, 1977, Vol. 2, No. 1, pp. 67–74, https://doi.org/10.1109/JOE.1977.1145328.
  11. Chelton D. B., Walsh E. J., MacArthur J. L., Pulse compression and sea level tracking in satellite altimetry, J. Atmospheric and Oceanic Technology, 1989, Vol. 6, pp. 407–438, https://doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2.
  12. Dally W. R., Osiecki D. A., Comparison of Deep-water ADCP and NDBC Buoy Measurements to Hindcast Parameters, Proc. Intern. Workshop on Wave Hindcasting and Forecasting, 2004, 12 p.
  13. Handbook of Automated Data Quality Control Checks and Procedures, NDBC Technical Document 09-02, NDBC, 2009, 78 p., https://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf.
  14. Kouraev A. V., Crétaux J. F., Lebedev S. A., Kostianoy A. G., Ginzburg A. I., Sheremet N. A., Mamedov R., Zakharova E. A., Roblou L., Lyard F., Calmant S., Bergé-Nguyen M., Satellite Altimetry Applications in the Caspian Sea, Coastal Altimetry, Vignudelli S., Kostianoy A., Cipollini P., Benveniste J. (eds.), Berlin: Springer, 2011, pp. 331–366, https://doi.org/10.1007/978-3-642-12796-0_13.
  15. Satellite Altimetry and Earth Sciences: A handbook of Techniques and Applications, Fu L. L., Cazenave A. (eds.), London; San Diego: Academic Press, 2001, 464 p.
  16. Strong B., Brumley B., Terray E., Stone G., The performance of ADCP-derived directional wave spectra and comparison with other independent measurements, Proc. OCEANS 2000 MTS/IEEE Conf. and Exhibition, 11–14 Sept, 2000, Providence, RI, USA, 2000, pp. 1195–1203, DOI: 13.1109/OCEANS.2000.881763.
  17. Thibaut P., Poisson J. C., Bronner E., Picot N., Relative Performance of the MLE3 and MLE4 Retracking Algorithms on Jason-2 Altimeter Waveforms, Marine Geodesy, 2010, Vol. 33, pp. 317–335, https://doi.org/10.1080/01490419.2010.491033.