Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 193-206
Using a multifunctional approach for cartographic modeling of organic carbon content in natural and arable soils of Central Caucasus
1 Tembotov Institute of Ecology of Mountain Territories RAS, Nalchik, Russia
Accepted: 20.06.2023
DOI: 10.21046/2070-7401-2023-20-3-193-206
Based on the information obtained on organic carbon content in soils and remote sensing data, a mapping model reflecting the spatial variation of organic carbon content in the upper horizons (0–20 cm) of soils in Central Caucasus was created using digital soil modelling and mapping technology. For modelling we applied a multifunctional approach involving a combination of actual data on the organic carbon content (training set) with data derived from external sources of information (remote sensing data) that was processed using a stepwise discriminant analysis. The necessity to create a model of organic carbon distribution in soils separately for artificial (agrocenoses) and natural biogeocenoses was established using statistical methods of analysis. As a result of combining two hypothetical models, a verified model reflecting the real picture of changes in the organic carbon content in soils of Central Caucasus was obtained. Reliability of the model was 68 %. It contains actual data on organic carbon content in natural and agrogenic soils of Central Caucasus. This model is a necessary tool for decision making to maintain or increase current soil carbon stocks under conditions of climate change and increasing anthropogenic impact.
Keywords: organic carbon content, cartographic models, discriminant analysis, Landsat, SRTM, WorldClim
Full textReferences:
- Baeva Yu. I., Kurganova I. N., Lopez de Gerenyu V. O., Telesnina V. M., Comparative assessment of carbon content in postagrogenic soils of various natural climatic zone, Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 2017, No. 2, pp. 27–39 (in Russian), DOI: 10.21513/0207-2564-2017-2-27-39.
- Biryukova O. N., Biryukov M. V., Organic carbon content in the upper horizons of soils, Natsional’nyi atlas pochv Rossiiskoi Federatsii (National Atlas of Soils of the Russian Federation), Moscow: Astrel’-AST, 2011, pp. 230–231 (in Russian).
- Val’kov V. F., Kolesnikov S. I., Kazeev K. Sh., Pochvy yuga Rossii: klassifikatsiya i diagnostika (Soils of the South of Russia: Classification and diagnostics), Rostov-on-Don: HSE Research Center, 2002, 349 p. (in Russian).
- Gedgafova F. V., Gorobtsova O. N., Uligova T. S., Tembotov R. Kh., Khakunova E. M., Changes in biological activity of mountain gray forest soils of the Central Caucasus (terskiy variant of vertical zonation within Kabardino-Balkaria) resulting from agricultural use, Agrokhimiya, 2019, No. 4, pp. 23–30 (in Russian), DOI: 10.1134/S0002188119040069.
- Giniyatullin K. G., Sakhabiev I. A., Smirnova E. V., Valeeva A. A., Ryazanov S. S., Latypova L. I., Using the reflectance parameters as covariates of the organic matter content in fallow soils, Uchenye zapiski Kazanskogo universiteta. Ser. Estestvennye nauki, 2022, Vol. 164, No. 3, pp. 438–456 (in Russian), DOI: 10.26907/2542-064X.2022.3.438-456.
- Kazeev K. Sh., Kolesnikov S. I., Val’kov V. F., Biologicheskaya diagnostika i indikatsiya pochv: metodologiya i metody issledovanii (Biological diagnostics and indication of soils: methodology and research methods), Rostov-on-Don: Publ. House of the Rostov University, 2003, 204 p. (in Russian).
- Karelin D. V., Tsymbarovich P. R., Soil microbial activity and chemical properties in relation to the topographic position of chernozem arable lands, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2022, Vol. 86, No. 1, pp. 134–150 (in Russian), DOI: 10.31857/S2587556622010071.
- Korznikov K. A., Belyaeva N. G., Sandlerskiy R. B., Modeling of the forest cover of the Vengeri River basin on Sakhalin Island using remote sensing data, Lesovedenie, 2020, No. 5, pp. 399–411 (in Russian), DOI: 10.31857/S002411482005006X.
- Krenke A. N., Otobrazhenie faktorov formirovaniya komponentov landshafta na osnove tematicheskikh kart, distantsionnoi informatsii i trekhmernoi modeli rel’efa: Diss. kand. geogr. nauk (Mapping factors of the formation of landscape components based on thematic maps, remote information and a three-dimensional relief model, Cand. geogr. sci. thesis), Moscow, 2011, 129 p. (in Russian).
- Krenke A. N., Puzachenko Yu. G., Building a landscape cover map based on remote information, Ekologicheskoe planirovanie i upravlenie, 2008, Vol. 2, No. 7, pp. 10–25 (in Russian).
- Orlov D. S., Grishina L. A., Praktikum po khimii gumusa (Workshop on chemistry of humus), Moscow: MSU Publ. House, 1981, 272 p.
- Popov S. Yu., Experience of creating a geobotanical map using discriminant analysis of field vegetation description and remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 25–35 (in Russian), DOI: 10.21046/2070-7401-2016-13-1-25-35.
- Puzachenko M. Yu., Chernenkova T. V., Definition of factors of spatial variation in vegetation using RSD, DEM and field data by example of the central part of Murmansk Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, No. 5, pp. 167–191 (in Russian), DOI: 10.21046/2070-7401-2016-13-5-167-191.
- Puzachenko Yu. G., Onufrenya I. A., Aleshchenko G. M., Spectral analysis of the hierarchical organization of relief, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2002, No. 4, pp. 29–38 (in Russian).
- Puzachenko M. Yu., Puzachenko Yu. G., Kozlov D. N., Fedyaeva M. V., Mapping the power of organogenic and humus horizons of forest soils and swamps of the South Taiga landscape (southwest of the Valdai upland) based on a three-dimensional relief model and remote information (Landsat-7), Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 70–78 (in Russian).
- Romanovskaya A. A., Organicheskii uglerod v pochvakh zalezhnykh zemel’ Rossii (Organic carbon in soils of fallow lands in Russia), Pochvovedenie, 2006, No. 1, pp. 52–61 (in Russian).
- Savin I. Yu., Usage of satellite data for soil mapping: modern tendencies and problems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 29–39 (in Russian), DOI: 10.21046/2070-7401-2016-13-6-29-39.
- Savin I. Yu., The trends of soil mapping and monitoring based on interpolation of point data and remote sensing methods, Moscow University Soil Science Bull., 2022, Vol. 77, No. 2, pp. 62–66.
- Sandlerskiy R. B., Puzachenko Yu. G., Biogeocenosis thermodynamics based on remote sensing, Zhurnal obshchei biologii, 2009, Vol. 70, No. 2, pp. 121–142 (in Russian).
- Tembotov R. Kh., Gorobtsova O. N., Gedgafova F. V., Uligova T. S., Khakunova E. M., Application of remote information and GIS technologies to create digital soil map (by the example of the plain and foothill parts of Kabardino-Balkaria), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 128–137 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-128-137.
- Khakunova E. M., Gorobtsova O. N., Gedgafova F. V., Uligova T. S., Tembotov R. Kh., Change in biological activity of Central Caucasus mountain chernozems under agricultural use (within the boundaries of the elbrus vertical zonation pattern in Kabardino-Balkaria), Agrokhimiya, 2018, No. 3, pp. 12–18 (in Russian), DOI: 10.7868/S000218811803002X.
- Chinilin A. V., Savin I. Yu., Estimation of organic carbon content in Russian soils using ensemble machine learning, Vestnik Moskovskogo universiteta. Ser. 5. Geografiya, 2022, No. 6, pp. 49–63 (in Russian), DOI: 10.55959/MSU0579-9414-5-2022-6-49-63.
- Schepaschenko D. G., Mukhortova L. V., Shvidenko A. Z., Vedrova E. F., The Pool of Organic Carbon in the Soils of Russia, Eurasian Soil Science, 2013, Vol. 46, No. 2, pp. 107–116, DOI: 10.1134/S1064229313020129.
- Abakumov E. V., Polyakov V., Orlova K. S., Podzol development on different aged coastal bars of Lake Ladoga, Vestnik Tomskogo gosudarstvennogo univiversiteta, Biologya, 2019, Vol. 48, pp. 6–31, DOI: 10.17223/19988591/48/1.
- Angelopoulou T., Tziolas N., Balafoutis A., Zalidis G., Bochtis D., Remote sensing techniques for soil organic carbon estimation: A review, Remote Sensing, 2019, Vol. 11, No. 6, Art. No. 676, DOI: 10.3390/rs11060676.
- Bhunia G. S., Shit P. K., Pourghasemi H. R., Soil organic carbon mapping using remote sensing techniques and multivariate regression model, Geocarto Intern., 2019, Vol. 34, No. 2, pp. 215–226, DOI: 10.1080/10106049.2017.1381179.
- Castaldi F., Chabrillat S., Chartin C., Genot V., Jones A. R., van Wesemael B., Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database, European J. Soil Science, 2018, Vol. 69, No. 4, pp. 592–603, DOI: 10.1111/ejss.12553.
- Dou X., Wang X., Liu H., Zhang X., Meng L., Pan Y., Yu Z., Cui Y., Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China, Geoderma, 2019, Vol. 356, No. 113896, DOI: 10.1016/j.geoderma.2019.113896.
- Elbeih S. F., Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS, The Egyptian J. Remote Sensing and Space Science, 2021, Vol. 24, Issue 3, No. 2, pp. 889–906, DOI: 10.1016/j.ejrs.2021.10.004.
- Global Soil Organic Carbon Map (GSOCmap) Version 1.5: Technical Report, FAO and ITPS, Rome, Italy: FAO, 2020, 169 p., DOI: 10.4060/ca7597en.
- Gomes L. C., Faria R. M., de Souza E., Veloso G. V., Schaefer C. E. G. R., Filho E. I. F., Modelling and mapping soil organic carbon stocks in Brazil, Geoderma, 2019, Vol. 340, pp. 337–350, DOI: 10.1016/j.geoderma.2019.01.007.
- Jobbágy E. G., Jackson R. B., The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecological Applications, 2000, Vol. 10, No. 2, pp. 423–436, DOI: 10.2307/2641104.
- Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., Zimmermann N. E., Linder P., Kessler M., Climatologies at high resolution for the Earth land surface areas, Scientific Data, 2017, Art. No. 170122, DOI: 10.1038/sdata.2017.122.
- Knoblauch C., Beer C., Sosnin A., Wagner D., Pfeiffer E. M., Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia, Global Change Biology, 2013, Vol. 19, Issue 4, pp. 1160–1172, https://doi.org/10.1111/gcb.12116.
- Lefèvre C., Rekik F., Alcantara V., Wiese L., Soil organic carbon: the hidden potential, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2017, 90 p.
- Liang Z., Chen S., Yang Y., Zhou Y., Shi Z., High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling, Science of Total Environment, 2019, Vol. 685, pp. 480–489, DOI: 10.1016/j.scitotenv.2019.05.332.
- Ma Y., Minasny B., Viaud V., Walter C., Malone B., McBratney A., Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia, Land, 2023, Vol. 12(1), Art. No. 255, DOI: 10.3390/land12010255.
- Minasny B., McBratney A. B., Digital soil mapping: A brief history and some lessons, Geoderma, 2016, Vol. 264, Pt. B, pp. 301–311, DOI: 10.1016/j.geoderma.2015.07.017.
- Minasny B., Malone B. P., McBratney A. B. et al., Soil carbon 4 per mille, Geoderma, 2017, Vol. 292, pp. 59–86, DOI: 10.1016/j.geoderma.2017.01.002.
- Recarbonization of global soils — A tool to support the implementation of the Koronivia Joint Work on Agriculture, 2020, 12 p., https://www.fao.org/documents/card/en/c/ca6522en/ (accessed 27.04.2023).
- Rozhkov V. A., Wagner V. B., Kogut B. M., Konyushkov D. E., Nilsson S., Sheremet V. B., Shvidenko A. Z., Soil Carbon Estimates and Soil Carbon Map for Russia: IIASA Working Paper, 1996, No. WP-96-060. 47 p.
- Showstack R., Agricultural sequestration called useful stop-gap mitigation measure for reducing atmospheric carbon, Eos Trans. American Geophysical Union, 2003, Vol. 84, No. 29, pp. 269–277, DOI: 10.1029/2003EO290003.
- Stolbovoi V., Carbon in Russian soils, Climatic Change. 2002, Vol. 55(1), pp. 131–156, DOI: 10.1023/A:1020289403835.
- Suleymanov A., Gabbasova I., Suleymanov R., Abakumov E., Polyakov V., Liebelt P., Mapping soil organic carbon under erosion processes using remote sensing, Hungarian Geographical Bull., 2021, No. 1, pp. 49–64, DOI: 10.15201/hungeobull.70.1.4.
- Szatmári G., Pásztor L., Heuvelink G. B. M., Estimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics, Geoderma, 2021, Vol. 403, Art. No. 115356, DOI: 10.1016/j.geoderma.2021.115356.
- Yang L., Meng X., Zhang X., SRTM DEM and its application advances, Intern. J. Remote Sensing, 2011, Vol. 32, No. 14, pp. 3875–3896, DOI: 10.1080/01431161003786016.
- Zhou T., Geng Y., Ji C., Xu X., Wang H., Pan J., Bumberger J., Haase D., Lausch A., Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images, Science of Total Environment, 2021, Vol. 755, Art. No. 142661, DOI: 10.1016/j.scitotenv.2020.142661.