Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 222-229
Registration of plastic flow autowaves in ice structures in radar measurements
A.A. Gurulev
1 , G.S. Bordonskiy
1 , A.O. Orlov
1 1 Institute of Natural Resources, Ecology and Cryology SB RAS, Chita, Russia
Accepted: 27.04.2023
DOI: 10.21046/2070-7401-2023-20-3-222-229
The paper considers radar peculiarities of ice structures state during plastic deformation. The peculiarities are based on determining the increase in intensity of scattered microwave radiation in a selected spectral interval — at frequencies of 13–14 GHz. The effect is determined by the wavelength of plastic flow autowaves, with a characteristic value of the order of one centimeter. Autowaves form chaotically distributed sets of diffraction gratings in ice, which change in time under the action of mechanical stresses. During analysis of Sentinel-1B satellite radar images of ice cover of Lake Shakshinskoe (Trans-Baikal Territory), one of them showed an increased value of the backscattering coefficient. The effect is associated with the manifestation of plastic flow autowaves during strong diurnal changes in the thermodynamic temperature of the ice cover. It is proposed to use the method of radar registration of current waves to detect a precursor of descent of pulsating glaciers in the form of increased scattered radiation from an object revealed in comparative measurements.
Keywords: microwaves, ice structures, plastic flow autowaves, ice fluidity, radar
Full textReferences:
- Bogorodskii V. V., Bentli Ch., Gudmandsen P., Radioglyatsiologiya (Radioglaciology), Leningrad: Gidrometeoizdat, 1983, 318 p. (in Russian).
- Bordonskii G. S., Gurulev A. A., Plastic flow autowaves in freshwater ice as manifested by microwave reflection measurements, Technical Physics Letters, 2019, Vol. 45, No. 3, pp. 285–287, DOI: 10.1134/S1063785019030246.
- Bordonskiy G. S., Gurulev A. A., Krylov S. D., Orlov A. O., Tsyrenzhapov S. V., Multy-frequency polarization measurements of microwaves propagating into ice cover, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 275–280 (in Russian).
- Bordonskiy G. S., Gurulev A. A., Orlov A. O., Tsyrenzhapov S. V., Difference between radar and radiometric signatures (the case of eutrophic lake ice cover), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 228–240 (in Russian).
- Bordonskiy G. S., Gurulev A. A., Krylov S. D., Orlov A. O., Tsyrenzhapov S. V., Determination of bottom gas liberation zones in fresh ice water areas according to radar and radiometric measurements data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 150–161 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-150–161.
- Gurulev A. A., Bordonskii G. S., Orlov A. O., Sposob opredeleniya nachal’noi stadii deformatsii nablyudaemogo s kosmicheskogo apparata lednika (Method for determining the initial stage of deformation of the glacier observed from the spacecraft), Patent RU 2742051, Reg. 02.02.2021 (in Russian).
- Dolgushin L. D., Osipova G. B., Pul’siruyushchie ledniki (Pulsing glaciers), Leningrag: Gidrometeoizdat, 1982, 192 p. (in Russian).
- Zuev L. B., Avtovolnovaya plastichnost’. Lokalizatsiya i kollektivnye mody (Autowave plasticity. Localization and collective mods), Moscow: Fizmatlit, 2018, 207 p. (in Russian).
- Zuev L. B., Khon Yu. A., Plastic Flow as Spatiotemporal Structure Formation. Part I. Qualitative and Quantitative Patterns, Physical Mesomechanics, 2022, Vol. 25, Issue 2, pp. 103–110, DOI: 10.1134/S1029959922020011.
- Kokin O. V., Geological and geomorphologic effects of surging glaciers, Moscow University Vestnik. Ser. 5. Geography, 2011, No. 1, pp. 22–27 (in Russian).
- Kotlyakov V. M., Rototaeva O. V., Desinov L. V., Osokin N. I., Causes and consequences of the catastrophic advance of the Kolka surging glacier in the central Caucasus, Doklady Earth Sciences, 2003, Vol. 389, No. 3, pp. 447–451.
- Kotlyakov V. M., Desinov L. V., Desinov S. L., Rudakov V. A., Surges of the Pamir glaciers in 2020, Ice and Snow, 2021, Vol. 61, No. 3, pp. 471–480 (in Russian), DOI: 10.31857/S2076673421030102.
- Macheret Yu. Ya., Glazovsky A. F., Lavrentiev I. I., Marchuk I. O., Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding, Ice and Snow, 2019, Vol. 59, No. 2, pp. 149–166 (in Russian), DOI: 10.15356/20766734-2019-2-430.
- Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Polar sea ice monitoring using satellite microwave radiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169 (in Russian).
- Lo Vecchio A., Lannutti E., Lenzano M., Mikkan R., Vacaflor P., Lenzano L., MODIS Image-derived ice surface temperature assessment in the Southern Patagonian Icefield, Progress in Physical Geography: Earth and Environment, 2019, Vol. 43, Issue 6, pp. 754–776, DOI: 10.1177/0309133319851022.
- Shokr M., Sinha N., Sea Ice: Physics and Remote Sensing, USA: John Wiley and Sons; American Geophysical Union, 2015, 600 p., DOI: 10.1002/9781119028000.