ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 164-175

Influence of forest disturbance types on spectral reflectance of coniferous stands in forest-steppe natural zone

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 25.04.2023
DOI: 10.21046/2070-7401-2023-20-3-164-175
Forest disturbance is one of key factors affecting the state of forests ecosystems, age structure and stand parameters. The article explores spectral reflectance of disturbance types in coniferous forests: burnt areas, areas disturbed by tree diseases and insect pests. Forest disturbance leads to an increase in reflectance in most Landsat bands, with the exception of the NIR band. An increase in forest disturbance also results in an increase in reflectance variation. A decreasing reflectance along the row “forest fire damage – damage by diseases – damage by pests – undisturbed forest areas” in the red and SWIR ranges was revealed. The reverse pattern was revealed in the near infrared range. Burnt forest areas are characterized by statistically significant differences in spectral reflectance in the visible and infrared ranges from all other disturbance types. Areas damaged by tree diseases are characterized by a statistically significant positive long-term reflectance trend in SWIR ranges and none in the other bands. For areas damaged by insect pests, no long-term trends in spectral reflectance have been identified.
Keywords: forest disturbance, spectral reflectance, remote sensing, Central Russian forest-steppe, Landsat
Full text

References:

  1. Bartalev S. A., Kuryatnikova T. S., Stibig Kh. Yu., Methods for the analysis of time-series of high-resolution satellite images for the assessment of logging in the taiga, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, No. 2, pp. 217–227 (in Russian).
  2. Vorob’ev O. N., Kurbanov E. A., Polevshchikova Yu. A., Lezhnin S. A., Assessment of dynamics and disturbance of forest cover in the Middle Povolzhje by Landsat images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 124–134 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-124-134.
  3. Vysotskii A. A., Korchagin O. M., Annosum root rot in scots pine (Pinus Sylvestris L.) forest plantations. Problems and ways to deal with them, Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2018, No. 224, pp. 176–192 (in Russian), DOI: 10.21266/2079-4304.2018.224.176-192.
  4. Degtyar’ A. V., Grigor’eva O. I., Tatarintsev R. Yu., Ekologiya Belogor’ya v tsifrakh (Ecology of Belogorye in numbers), Belgorod: Konstanta, 2016, 122 p. (in Russian).
  5. Kamyshev N. S., Khmelev K. S., Rastitel’nyi pokrov Voronezhskoi oblasti i ego okhrana (Vegetation cover of the Voronezh region and its protection), Voronezh: Izd. Voronezhskogo universiteta, 1976, 181 p. (in Russian).
  6. Loupian E. A., Lozin D. V., Balashov I. V., Bartalev S. A., Stytsenko F. V., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
  7. Stytsenko F. V., Bartalev S. A., Bukas A. V., Ershov D. V., Saigin I. A., The possibilities of prolonged burnt severity assessment of evergreen coniferous forest using multi-spectral satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 217–227 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-217-227.
  8. Terekhin E. A., Estimation of forest ecosystems disturbance in the southwest of Central Russian Upland using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 112–124 (in Russian), DOI: 10.21046/2070-7401-2017-14-4-112-124.
  9. Terekhin E. A., Change of Forest Ecosystems Disturbance in the Forest-Steppe Zone of the Central Chernozem Region at the End of the XX Century – beginning of the XXI Century, Issledovanie Zemli iz kosmosa, 2020, No. 3, pp. 26–37 (in Russian), DOI: 10.31857/S0205961420030069.
  10. Chendev Yu. G., Petin A. N., Serikova E. V., Kramchaninov N. N., Degradation of geosystems in the Belgorod region as a result of the economic activities, Geography and Natural Resources, 2008, Vol. 29, No. 4, pp. 348–353, DOI: 10.1016/j.gnr.2008.10.010.
  11. Shvetsov E. G., Study of the influence of fire radiative power of forest fires on forest disturbance degree in southern regions of Central Siberia using satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 136–146 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-136-146.
  12. Barta K. A., Hais M., Heurich M., Characterizing forest disturbance and recovery with thermal trajectories derived from Landsat time series data, Remote Sensing of Environment, 2022, Vol. 282, Art.  No. 113274, DOI: 10.1016/j.rse.2022.113274.
  13. Borrelli P., Modugno S., Panagos P., Marchetti M., Schütt B., Montanarella L., Detection of harvested forest areas in Italy using Landsat imagery, Applied Geography, 2014, Vol. 48, pp. 102–111, DOI: 10.1016/j.apgeog.2014.01.005.
  14. Gale M. G., Cary G. J., Van Dijk A. I. J. M., Yebra M., Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour, Remote Sensing of Environment, 2021, Vol. 255, Art. No. 112282, DOI: 10.1016/j.rse.2020.112282.
  15. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, No. 6160, pp. 850–853, DOI: 10.1126/science.1244693.
  16. Long L., Chen Y., Song S., Zhang X., Jia X., Lu Y., Liu G., Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index, Remote Sensing, 2023, Vol. 15(2), DOI: 10.3390/rs15020360.
  17. Lu J., Huang C., Tao X., Gong W., Schleeweis K., Annual forest disturbance intensity mapped using Landsat time series and field inventory data for the conterminous United States (1986–2015), Remote Sensing of Environment, 2022, Vol. 275, Art. No. 113003, DOI: 10.1016/j.rse.2022.113003.
  18. Potapov P. V., Turubanova S. A., Tyukavina A., Krylov A. M., McCarty J. L., Radeloff V. C., Hansen M. C., Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote Sensing of Environment, 2015, Vol. 159, pp. 28–43, DOI: 10.1016/j.rse.2014.11.027.
  19. Schroeder T. A., Wulder M. A., Healey S. P., Moisen G. G., Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data, Remote Sensing of Environment, 2011, Vol. 115, No. 6, pp. 1421–1433, DOI: 10.1016/j.rse.2011.01.022.
  20. Stahl A. T., Andrus R., Hicke J. A., Hudak A. T., Bright B. C., Meddens A. J. H., Automated attribution of forest disturbance types from remote sensing data: A synthesis, Remote Sensing of Environment, 2023, Vol. 285, Art. No. 113416, DOI: 10.1016/j.rse.2022.113416.
  21. Tran T. V., de Beurs K. M., Julian J. P., Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images, Intern. J. Applied Earth Observation and Geoinformation, 2016, Vol. 44, pp. 42–52, DOI: 10.1016/j.jag.2015.07.001.
  22. White J. C., Wulder M. A., Hermosilla T., Coops N. C., Hobart G. W., A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series, Remote Sensing of Environment, 2017, Vol. 194, pp. 303–321, DOI: 10.1016/j.rse.2017.03.035.
  23. Woodward B., Engelstad P., Vorster A., Beddow C., Krail S., Vashisht A., Evangelista P., Forest harvest dataset for northern Colorado Rocky Mountains (1984–2015) generated from a Landsat time series and existing forest harvest records, Data in Brief, 2017, Vol. 15, pp. 724–727, DOI: 10.1016/j.dib.2017.10.030.
  24. Zhao F., Huang C., Goward S. N., Schleeweis K., Rishmawi K., Lindsey M. A., Denning E., Keddell L., Cohen W. B., Yang Z., Dungan J. L., Michaelis A., Development of Landsat-based annual US forest disturbance history maps (1986–2010) in support of the North American Carbon Program (NACP), Remote Sensing of Environment, 2018, Vol. 209, pp. 312–326, DOI: 10.1016/j.rse.2018.02.035.