Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 209-221
Depth determination in the coastal water zone near the Crimean Peninsula with different seafloor types using unmanned aerial vehicle measurements
B.N. Novikov
1 , A.K. Kubryakov
1 , S.F. Fedorov
1 1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 12.04.2023
DOI: 10.21046/2070-7401-2023-20-3-209-221
In this article, the bathymetry is reconstructed in the coastal shallow water zone of the Crimean Peninsula based on measurements from an optical camera that records a signal in three optical channels (RGB), which is installed on a commercial unmanned aerial vehicle (UAV). The method was applied separately for areas with different types of underlying bottom surface to assess the sensitivity of the method. For this purpose, the authors propose a classification method using the vegetation index for the marine environment VDVI, which made it possible to estimate the areas occupied by macrophytobenthos and sand. The results show that the algorithm depends weakly on the underlying surface and allows determining the depth for areas with a mixed bottom type. The proposed methods make it possible to determine the areal variability (several square kilometers in size) of the bottom topography with a high resolution (~10 cm) and allows monitoring of changes in the depth and underlying bottom surface characteristics during one UAV survey. In the future, such data will make it possible to clarify the existing ideas about the processes of formation and variability of the bottom topography and development of macrophytobenthos under the influence of various hydrodynamic processes.
Keywords: unmanned aerial vehicle (UAV), bathymetry, Black Sea, macrophytobenthos, optical measurements, remote sensing methods
Full textReferences:
- Barymova A. A., Kokorin A. I., The use of UAVs for aerial photography for integrated mapping of coastal zones on the example of the littoral of the Karelian coast of the White Sea, 2-ya Studencheskaya nauchnaya sessiya UNB “Belomorskaya” SPBGU (2nd Student Scientific Session of the Educational and Research Station “Belomorskaia”. Saint Petersburgh State University), Saint Petersburg: Saing Petersburg State University, 2018, pp. 31–32 (in Russian).
- Blinova E. I., Vilkova O. Yu., Milyutin D. M., Pronina O. A., Shtrik V. A., Miljutin D., Metody landshaftnykh issledovanii i otsenki zapasov donnykh bespozvonochnykh i vodoroslei morskoi pribrezhnoi zony (Methods of landscape research and assessment of stocks of benthic invertebrates and algae of the marine coastal zone), Moscow: VNIRO, 2005, Issue 3, 135 p. (in Russian), DOI: 10.13140/RG.2.1.3592.1764.
- Dulov V. A., Yurovskaya M. V., Spectral Contrasts of Short Wind Waves in Artificial Slicks from the Sea Surface Photographs, Physical Oceanography, 2021, Vol. 28(3), pp. 348–360, DOI: 10.22449/1573-160X-2021-3-348-360.
- Krylenko M. V., Krylenko V. V., Features of performing high-precision survey of the abrasion coast relief by UAV, Byulleten’ nauki i praktiki, 2020, Vol. 6, No. 2 (in Russian), DOI: 10.33619/2414-2948/51/01.
- Kubryakov A. A., Lishaev P. N., Chepyzhenko A. I., Aleskerova A. A., Kubryakova E. A., Medvedeva A. A., Stanichny S. V., Impact of submesoscale eddies on the transport of suspended matter in the coastal zone of Crimea based on drone, satellite, and in situ measurement data, Oceanology, 2021, Vol. 61, No. 2, pp. 159–172, DOI: 10.1134/S0001437021020107.
- Mamedov I. E., Issues of applying unmanned aerial vehicles for detecting oil slicks in coastal sea waters, Problemy regional’noi ekologii, 2019, Vol. 4, pp. 88–91 (in Russian), DOI: 10.24411/1728-323X-2019-14088.
- Pankeeva T. V., Mironova N. V., Novikov A. B., Mapping of bottom vegetation of Kruglaya Bay (The Black Sea, Sevastopol), Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon morya, 2019, Vol. 3, pp. 61–71 (in Russian), DOI: 10.22449/2413-5577-2019-3-61-71.
- Pankeeva T. V., Mironova N. V., Novikov B. A., Experience in mapping bottom vegetation (for example of Laspi Bay, Black Sea), Geopolitika i ekogeodinamika regionov, 2020, Vol. 6(4), pp. 154–169 (in Russian), DOI: 10.37279/2309-7663-2020-6-4-154-169.
- Repkina T. Yu., Gurinov A. L., Kublitskiy Yu. A., Leontiev P. A., Lugovoi N. N., Dudorkin E. S., Peretrukhina A. O., New data on the relief and postglacial deposits of the shores of the gorlo strait and Onega Peninsula (White Sea), Rel’ef i chetvertichnye obrazovaniya Arktiki, Subarktiki i Severo-Zapada Rossii, 2020, No. 7, pp. 168–163 (in Russian), DOI: 10.24411/2687-1092-2020-10724.
- Yurovskaya M., Kudryavtsev V., Shirokov A. S., Nadolya I. Yu., Field measurements of the sea surface wave spectrum from photos of sunglitter taken from drone, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, pp. 245–257 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-245-257.
- Angnuureng D. B., Jayson-Quashigah P. N., Almar R., Stieglitz T. C., Anthony E. J., Aheto D. W., Appeaning Addo K., Application of Shore-Based Video and Unmanned Aerial Vehicles (Drones): Complementary Tools for Beach Studies, Remote Sensing, 2020, Vol. 12, Art. No. 394, DOI: 10.3390/rs12030394.
- Bergsma E. W., Almar R., Rolland A., Binet R., Brodie K. L., Bak A. S., Coastal morphology from space: A showcase of monitoring the topography-bathymetry continuum, Remote Sensing of Environmen, 2021, Vol. 261, Art. No. 112469, DOI: 10.1016/j.rse.2021.112469.
- Fallati L., Saponari L., Savini A., Marchese F., Corselli C., Galli P., Multi-Temporal UAV Data and Object-Based Image Analysis (OBIA) for Estimation of Substrate Changes in a Post-Bleaching Scenario on a Maldivian Reef, Remote Sensing, 2020, Vol. 12, Art. No. 2093, DOI: 10.3390/rs12132093.
- Jupp D. L., Background and extension to depth of penetration (DOP) mapping in shallow coastal waters, Proc. Remote Sensing of the Coastal Zone Intern. Symp., Gold Coast, Australia, 1988, pp. IV2.1–IV2.19, http://hdl.handle.net/102.100.100/265466?index=1.
- Konstantinos T., Apostolos P., Shungudzemwoyo P. G., Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018), Intern. J. Applied Earth Observation and Geoinformation, 2019, Vol. 79, pp. 175–183, DOI: 10.1016/j.jag.2019.03.011.
- Korshenko E., Zhurbas V., Osadchiev A., Belyakova P., Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018, Marine Pollution Bull., 2020, Vol. 160, Art. No. 11678, DOI: 10.1016/j.marpolbul.2020.111678.
- Lyzenga D. R., Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features, Applied Optics, 1978, Vol. 17, pp. 379–383, http://dx.doi.org/10.1364/AO.17.000379.
- Lyzenga D. R., Remote sensing of bottom reflectance and Water attenuation parameters in shallow water using aircraft and Landsat data, Remote Sensing, 1981, Vol. 2(1), pp. 71–82.
- Lyzenga D. R., Malinas N. P., Tanis F. J., Multispectral bathymetry using a simple physically based algorithm, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, pp. 2251–2259, DOI: 10.1109/TGRS.2006.872909.
- Philpot W. D., Bathymetric mapping with passive multispectral imagery, Applied Optics, 1989, Vol. 28, pp. 1569–1578.
- Rossi L., Mammi I., Pelliccia F., UAV-Derived Multispectral Bathymetry, Remote Sensing, 2020, Vol. 12, Art. No. 3897, DOI: 10.3390/rs12233897.
- Stumpf R. P., Holderied K., Sinclair M., Determination of water depth with high-resolution satellite imagery over variable bottom types, Limnology and Oceanography, 2003, Vol. 48, pp. 547–556, DOI: 10.4319/lo.2003.48.1_part_2.0547.
- Wei Y., Jiang S., Tian L., Wei L., Jin J., Ibánhez J. S. P., Chang Y., Wei X., Wu Y., Benthic microbial biogeography along the continental shelf shaped by substrates from the Changjiang River plume, Acta Oceanologica Sinica, 2022, Vol. 41, pp. 118–131, DOI: 10.1007/s13131-021-1861-8.
- Xiaopeng J., Meng G., Zhiqiang G., A novel index to detect green-tide using UAV-based RGB imagery, Estuarine, Coastal and Shelf Science, 2020, Vol. 245, Art. No. 106943, DOI: 10.1016/j.ecss.2020.106943.