ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 144-152

Dynamics of perturbations in the lower atmosphere in seismically active regions of Asia

L.G. Sverdlik 1, 2 
1 Research Station RAS in Bishkek City, Bishkek, Kyrgyzstan
2 Kyrgyz–Russian Slavic University, Bishkek, Kyrgyzstan
Accepted: 10.04.2023
DOI: 10.21046/2070-7401-2023-20-2-144-152
The work presents the results of the study of atmospheric effects, which manifested themselves in an abnormal change in meteorological parameters in the upper troposphere and lower stratosphere (UTLS) during extreme seismic events. Using the capabilities of satellite remote sensing (global MERRA-2 reanalysis) to assess the effect of strong seismicity on the state of the atmosphere, an analysis of time series of temperature, as well as zonal and meridional wind speeds at all available isobaric levels in the range of altitudes of ~5–25 km was carried out. These parameters made it possible to trace the processes of formation and spatiotemporal transformation of perturbations coinciding in time with the processes of preparation and passage of strong earthquakes M = 7,3, recorded in the zone of the Alpine-Himalayan seismic zone in Iraq (November 12, 2017) and China (May 21, 2021). Isolation and identification of pre-seismic temperature perturbations was performed using a special algorithm. Comparison of UTLS temperature perturbation data with seismicity variations revealed abnormal variations lasting up to 5 days, which were formed ~1–2 days before the studied events. Temperature disturbances were manifested not only at the stage of preparation of strong earthquakes, but also in the post-seismic period. In the changes in the wind regime, pre-seismic effects were also revealed. An important result of the studies is the large similarity of the detected abnormal disturbances of meteorological parameters during the periods of preparation of two earthquakes, which can probably be considered as evidence of the interaction of the lithosphere and the atmosphere during periods of seismic activity.
Keywords: satellite measurements, temperature, wind speed, direction, earthquake, upper troposphere, lower stratosphere, STA/LTA criterion, integral parameter, anomaly
Full text

References:

  1. Kashkin V. B., Inner gravity waves in the troposphere, Optika atmosfery i okeana, 2013, Vol. 26, No. 10, pp. 908–916 (in Russian).
  2. Sverdlik L. G., Identification of pre-seismic atmospheric perturbations using modified STA/LTA criterion, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 141–149 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-141-149.
  3. Sverdlik L. G., Atmospheric effects of the largest earthquakes in the Alpine-Himalayan seismic belt, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 81–90 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-81-90.
  4. Sverdlik L. G., Ibraev A. E., Use of the modified STA/LTA algorithm for detection pre-seismic temperature perturbations in the lower atmosphere, Vestnik Kyrgyzsko-Rossiiskogo slavyanskogo universiteta, 2022, Vol. 22, No. 12, pp. 190–196 (in Russian), DOI: 10.36979/1694-500X-2022-22-12-190-196.
  5. Sverdlik L. G., Ibraev A. E., Program IPPLA (Identification of Preseismic Perturbations in the Lower Atmosphere), Certificate of state registration of software No. 2023612499 (RU), Reg. 03.02.2023 (in Russian).
  6. Sverdlik L. G., Imashev S. A., Spatial-temporal distribution of atmospheric perturbations before strong earthquakes in Tien-Shan, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 114–122 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-114-122.
  7. Dobrovolsky I., Zubkov S., Miachkin V., Estimation of the size of earthquake preparation zones, Pure and Applied Geophysics, 1979, Vol. 117, No. 5, pp. 1025–1044.
  8. Gavrilov N. M., Fukao S., Numerical and the MU radar estimations of gravity wave enhancement and turbulent ozone fluxes near the tropopause, Annales Geophysicae, 2004, Vol. 22, No. 11, pp. 3889–3898, DOI: 10.5194/angeo-22-3889-2004.
  9. Hayakawa M., Asano T., Rozhnoi A., Solovieva M., Seismo-ionospheric perturbations as observed by subionospheric VLF/LF propagation, and their generation hypothesis in terms of atmospheric gravity waves, Intern. J. Electronics and Applied Research (IJEAR), 2016, Vol. 3, Issue 1, pp. 40–61.
  10. Jiao Z., Shan X., Pre-Seismic Temporal Integrated Anomalies from Multiparametric Remote Sensing Data, Remote Sensing, 2022, Vol. 14, Issue 10, Art. No. 2343, DOI: 10.3390/rs14102343.
  11. Jiao Z-H., Zhao J., Shan X., Pre-seismic anomalies from optical satellite observations: a review, Natural Hazards and Earth System Sciences, 2018, Vol. 18, No. 4, pp. 1013–1036, DOI: 10.5194/nhess-18-1013-2018.
  12. Ma W., Zhang X., Jun L., Qi Y., Bo Z., Chong Y., Chunli K., Xian L., Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before, during and after the Jiujiang earthquake, Remote Sensing of Environment, 2018, Vol. 210, pp. 159–165, DOI: 10.1016/j.rse.2018.03.003.
  13. Manney G. L., Hegglin M. I., Lawrence Z. D., Wargan K., Millán L. F., Schwartz M. J., Santee M. L., Lambert A., Pawson S., Knosp B. W., Fuller R. A., Daffer W. H., Reanalysis comparisons of upper tropospheric – lower stratospheric jets and multiple tropopauses, Atmospheric Chemistry and Physics, 2017, Vol. 17, No. 18, pp. 11541–11566, DOI: 10.5194/acp-17-11541-2017.
  14. Plougonven R., Zhang F., Internal gravity waves from atmospheric jets and fronts, Reviews of Geophysics, 2014, Vol. 52, pp. 33–76, DOI: 10.1002/2012RG000419.
  15. Rienecker M. M., Suarez M. J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M. G., Schubert S. D., Takacs L., Kim G.-K., Bloom S., Chen J., Collins D., Conaty A., Da Silva A., Gu W., Joiner J., Koster R. D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C. R., Reichle R., Robertson F. R., Ruddick A. G., Sienkiewicz M., Woollen J., MERRA: NASA’s Modern-Era retrospective analysis for research and applications, J. Climate, 2011, Vol. 24, pp. 3624–3648, DOI: 10.1175/JCLI-D-11-00015.1
  16. Sverdlik L., Imashev S., Spatial-temporal distribution of atmospheric temperature anomalies connected with seismic activity in Tien-Shan, MAUSAM, 2020, Vol. 71, No. 3, pp. 481–490, https://doi.org/10.54302/mausam.v71i3.49.
  17. Wu H.-C., Leybourne B., Using Jet Stream’s Precursors to Make Earthquake Forecast, Systemics, Cybernetics and Informatics, 2020, Vol. 18, No. 4, pp. 62–65.
  18. Wu H.-C., Tikhonov I. N., Jet streams anomalies as possible short-term precursors of earthquakes with M > 6.0, Research in Geophysics, 2014, Vol. 4, No. 1, pp. 12–18, DOI: 10.4081/rg.2014.4939.
  19. Yang S.-S., Asano T., Hayakawa M., Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes, J. Geophysical Research: Space Physics, 2019, Vol. 124, Issue 2, pp. 1410–1425, DOI: 10.1029/2018JA026002.
  20. Zhang Y., Meng Q., Wang Z., Lu X., Hu D., Temperature Variations in Multiple Air Layers before the Mw 6.2 2014 Ludian Earthquake, Yunnan, China, Remote Sensing, 2021, Vol. 13, No. 5, Art. No. 884, DOI: 10.3390/rs13050884.