ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 174-183

Assessment of possibilities for protective forest belts canopy closure and height estimation based on ICESat-2 data

S.S. Shinkarenko 1 , S.A. Bartalev 1 , M.A. Bogodukhov 1 , V.O. Zharko 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 20.03.2023
DOI: 10.21046/2070-7401-2023-20-2-174-183
This paper presents the results of the analysis of possibilities for using ATL08 product on vegetation canopy height based on ATLAS/ICESat-2 data to estimate the height of protective forest belts (windbreaks/shelterbelts). Vegetation height according to lidar data for 2019–2022 was compared with 2022 aerial photography survey data in Volgograd region. A significant strong correlation was found between mean and maximum canopy heights determined from aerial survey and laser scanning data for 20×14 m segments with tree and shrub coverage of more than 50 %. For mean heights RMSE = 0.7 m and coefficient of determination R2 = 0.85; for maximum heights RMSE = 2.2 m and R2 = 0.83. Comparison of the forest canopy closure based on lidar data, calculated as the ratio of the number of photons above a threshold height to the total number of photons in the segment, and aerial data showed the insufficient accuracy of this approach. Obtained results indicate potential of using ATL08 lidar data for protective forest belts’ height mapping.
Keywords: protective forest belts, remote sensing, lidars, trees and shrubs, ICESat-2
Full text

References:

  1. Bartalev S. A., Bogodukhov M. A., Zharko V. O., Sidorenkov V. M., Investigation of ICESat-2 data capabilities for forest height estimation over Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 195–206 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-195-206.
  2. Vypritskiy A. A., Shinkarenko S. S., Analysis of soil and climatic factors influence on the protective forest condition based on Sentinel-2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 147–163 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-147-163.
  3. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  4. Medvedev A. A., Telnova N. O., Kudikov A. V., Alekseenko N. A., Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 150–163 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-150-163.
  5. Terekhin E. A., Relationships between forest stand parameters and Sentinel-2 spectral reflectance in the Central Russian forest-steppe, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 124–137 (in Russian), DOI: 10.21046/2070-7401-2022-19-6-124-137.
  6. Khovratovich T. S., Bartalev S. A., Kashnitskii A. V., Forest change detection based on sub-pixel estimation of crown cover density using bitemporal satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 102–110 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-102-110.
  7. Shinkarenko S. S., Bartalev S. A., Possibilities of assessing protective forest canopy using Sentinel 2 based bi-seasonal forest index and UAV data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 189–202 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-189-202.
  8. Shinkarenko S. S., Bartalev S. A., Vasilchenko A. A., Method for protective forest plantations mapping based on multi-temporal high spatial resolution satellite images and Bi-Season Forest Index, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 207–222 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-207-222.
  9. Chianucci F., Disperati L., Guzzi D., Bianchini D., Nardino V., Lastri C., Rindinella A., Corona P., Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV, Intern. J. Applied Earth Observation and Geoinformation, 2016, Vol. 47, pp. 60–68, DOI: 10.1016/j.jag.2015.12.005.
  10. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853, DOI: 10.1126/science.1244693.
  11. Huang J., Xing Y., Qin L., Xia T., Accuracy verification of terrain under forest estimated from ICESat-2/ATLAS data, Infrared and Laser Engineering, 2020, Vol. 49, No. 11, Art. No. 20200237, DOI: 10.3788/IRLA20200237.
  12. Lin X., Xu M., Cao C., Dang Y., Bashir B., Xie B., Huang Z., Estimates of Forest Canopy Height Using a Combination of ICESat-2/ATLAS Data and Stereo-Photogrammetry, Remote Sensing, 2020, Vol. 12, Art. No. 3649, DOI: 10.3390/rs12213649.
  13. Neuenschwander A., Guenther E., White J. C., Duncanson L., Montesano P., Validation of ICESat-2 terrain and canopy heights in boreal forests, Remote Sensing of Environment, 2020, Vol. 251, Art. No. 112110, 15 p., DOI: 10.1016/j.rse.2020.112110.
  14. Neuenschwander A. L., Pitts K. L., Jelley B. P., Robbins J., Klotz B., Popescu S. C., Nelson R. F., Harding D., Pederson D., Sheridan R., ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 5: User Guide, Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021, 19 p., DOI: 10.5067/ATLAS/ATL08.005.
  15. Neuenschwander A., Pitts K., Jelley B., Robbins J., Markel J., Popescu S., Nelson R., Harding D., Pederson D., Klotz B., Sheridan R., Ice, Cloud, and Land Elevation Satellite (ICESat-2): Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08), Version 6, 2022, 144 p., DOI: 10.5067/1PJ82T4JS50L.
  16. Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M., Kommareddy A., Pickens A., Turubanova A., Tang H., Silva C. E., Armston J., Dubayah R., Blair J. B., Hofton M., Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sensing of Environment, 2020, Vol. 253, Art. No. 112165, DOI: 10.1016/j.rse.2020.112165.
  17. Sun T., Qi J., Huang H., Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China, Forest Ecosystems, 2020, Vol. 7, Art. No. 53, DOI: 10.1186/s40663-020-00265-w.
  18. Xi L., Li L., Shu Q., Sun Y., Huang J., Song H., Forest Terrain Inversion Based on Icesat-2/ATLAS with Different Laser Intensities, Polish J. Environmental Studies, 2023, Vol. 32, No. 1, pp. 341–351, DOI: 10.15244/pjoes/153928.