ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 49-59

Application of space-based SAR in single-pass squint mode in Earth tomographic study

M.I. Babokin 1 , P.E. Shimkin 2 
1 JSC Aerocon, Zhukovsky, Moscow Region, Russia
2 National Research University "Moscow Power Engineering Institute", Moscow, Russia
Accepted: 21.03.2023
DOI: 10.21046/2070-7401-2023-20-2-49-59
Construction features and main characteristics of a tomographic complex based on a single-position space radar with synthetic aperture radar (SAR) operating in the single-pass squint Earth observation mode are considered. The operating conditions and requirements for information support of the multichannel signal processing system are determined. The operability of the proposed approach using real signals of two wavelength ranges obtained during experimental flights was tested. The tomographic SAR (TSAR) under consideration makes it possible to perform a rapid four-dimensional assessment during one pass of the carrier, without using a second receiving antenna. The algorithmic implementation of paired signals multidimensional processing is described, the verification and debugging of which was carried out using real radio holograms. The feature of this TSAR construction is the possibility to use one increased synthesis interval, with a division into sub-intervals to enable spatial diversity of multi-pair receiving apertures, in the implementation of multi-dimensional phase-difference radar measurements. The possibility demonstrated to use the proposed construction design of the tomographic complex with SAR in solving tasks related to obtaining additional information on the state of the Earth’s surface. This paper presents the first experimental results of imaging the layered inhomogeneities of the underlying surface by using multidimensional phase-difference processing of paired signals from a single-pass SAR operating in squint mode.
Keywords: synthetic aperture radar (SAR), tomographic SAR, multidimensional signal processing, complex earth surface, experimental results
Full text


  1. Babokin M. I., Aviatsionnye i kosmicheskie kompleksy distantsionnogo zondirovaniya Zemli s interferometricheskoi obrabotkoi mnogomernykh signalov: Diss. dokt. tekhn. nauk (Aviation and space complexes for remote sensing of the Earth with interferometric processing of multidimensional signals, Dr. techn. sci. thesis), Moscow, 2010, 336 p. (in Russian).
  2. Babokin M. I., Efimov A. V., Karpov O. A., Titov M. P., Single-pass interferometer with anterolateral review, Radiotekhnika, 2014, No. 7, pp. 16–20 (in Russian).
  3. Babokin M. I., Efimov A. V., Zaitsev S. E., Karpov O. A., Savosin G. V., Titov M. P., Tolstov E. F., Turuk V. E., Tsvetkov O. E., The Condor-E spacecraft with SAR and its capabilities, Issledovanie Zemli iz kosmosa, 2017, No. 3, pp. 85–95 (in Russian), DOI: 10.7868/S0205961417030010.
  4. Baskakov A. I., Zhutyaeva T. S., Lukashenko Yu. I., Lokatsionnye metody issledovaniya ob”ektov i sred (Location methods for studying objects and environments), A. I. Baskakov (ed.), Moscow: Izd. tsentr “Akademiya”, 2011, 384 p. (in Russian).
  5. Verba V. S., Neronskii L. B., Osipov I. G., Turuk V. E., Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Space-based radar systems for land survey), Verba V. S. (ed.), Moscow: Radiotekhnika, 2010, 680 p. (in Russian).
  6. Volosyuk V. K., Kravchenko V. F., Statisticheskaya teoriya radiotekhnicheskikh sistem distantsionnogo zondirovaniya i radiolokatsii (Statistical theory of radio engineering systems of remote sensing and radar), V. F. Kravchenko (ed.), Moscow: Fizmatlit, 2008, 704 p. (in Russian).
  7. Zakharov A. I., Metody distantsionnogo zondirovaniya Zemli radarami s sinteziruemoi aperturoi: Diss. dokt. fiz.-mat. nauk (Earth remote sensing methods with synthetic aperture radars, Dr. phys. math. sci. thesis), Moscow, 2012, 370 p. (in Russian).
  8. Kozlov A. I., Logvin A. I., Sarychev V. A., Polyarizatsiya radiovoln. Kn. 2. Radiolokatsionnaya polyarimetriya (Polarization of radio waves. Book 2. Radar polarimetry), Moscow: Radiotekhnika, 2007, 520 p. (in Russian).
  9. Kondratenkov G. S., Frolov A. Yu., Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli (Radio vision, Radar systems for remote sensing of the Earth), G. S. Kondratenkov (ed.), Moscow: Radiotekhnika, 2005, 368 p. (in Russian).
  10. Shimkin P. E., Odnoprokhodnyi bortovoi interferometricheskii radiolokator s sintezirovannoi aperturoi antenny perednebokovogo obzora dlya otsenki rel’efa podstilayushchei poverkhnosti: Diss. kand. tekhn. nauk (Single-pass airborne interferometric radar with a synthetic aperture antenna with squint spotlight mode for assessing the relief of the underlying surface, Cand. techn. sci. thesis), Moscow, 2018, 140 p. (in Russian).
  11. Shimkin P. E., Babokin M. I., Baskakov A. I., A Study of Accuracy of Single-pass Interferometric Synthetic Aperture Radar with Front-side view for Measuring the Earth’s Surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 103–112 (in Russian).
  12. Shkolnyi L. A., Tolstov E. F., Detkov A. N., Radiolokatsionnye sistemy vozdushnoi razvedki, deshifrirovanie radiolokatsionnykh izobrazhenii (Radar systems of aerial reconnaissance, decoding of radar images), L. A. Shkolny (ed.), Moscow: Izd. VVIA imeni prof. N. E. Zhukovskogo, 2008, 531 p. (in Russian).
  13. Fornaro G., Pascazio V., SAR interferometry and Tomography. Theory and Applications, Academic Press Library in Signal Processing, 2014, Vol. 2, pp. 1043–1117, DOI: 10.1016/B978-0-12-396500-4.00020-X.
  14. Fornaro G., Lombardini F., Serafino F., Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 4, pp. 702–714, DOI: 10.1109/TGRS.2005.843567.
  15. Ka M.-H., Shimkin P. E., Baskakov A. I., Babokin M. I., A New Single-Pass SAR Interferometry Technique with a Single-Antenna for Terrain Height Measurements, Remote Sensing, 2019, Vol. 11, No. 9, Art. No. 1070, DOI: 10.3390/rs11091070.
  16. Khoshnevis S. A., Ghorshi S., A tutorial on tomographic synthetic aperture radar methods, SN Applied Sciences, 2020, Vol. 2, Art. No. 1504, DOI: 10.1007/s42452-020-03298-6.
  17. Mariotti M., Tebaldini S., Digital Terrain Model Retrieval in Tropical Forests Through P-Band SAR Tomography, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 57, No. 9, pp. 6774–6781, DOI: 10.1109/TGRS.2019.2908517.
  18. Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I., Papathanassiou K. P., A tutorial on synthetic aperture radar, IEEE Geoscience and Remote Sensing Magazine, 2013, Vol. 1, No. 1, pp. 6–43, DOI: 10.1109/MGRS.2013.2248301.
  19. Ouchi K., Recent trend and advance of synthetic aperture radar with selected topics, Remote Sensing, 2013, Vol. 5, No. 2, pp. 716–807.
  20. Ponce O., Prats-Iraola P., Scheiber R., Reigber A., Moreira A., First Airborne Demonstration of Holographic SAR Tomography With Fully Polarimetric Multicircular Acquisitions at L-Band, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 10, pp. 6170–6196, DOI: 10.1109/TGRS.2016.2582959.
  21. Richards M. A., Fundamentals of radar signal processing, New York: McGrawHill, 2022, 513 p.
  22. Rosenqvist A., Shimada M., Ito N., Watanabe M., ALOS PALSAR, A Pathfinder Mission for Global-Scale Monitoring of the Environment, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 11, pp. 3307–3316, DOI: 10.1109/TGRS.2007.901027.