ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 262-272

Numerical modelling of interaction between Novorossiysk bora and upper layer of the Black Sea

D.A. Iarovaia 1 , V.V. Efimov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 05.04.2023
DOI: 10.21046/2070-7401-2023-20-2-262-272
We study the reaction of the Black Sea upper layer to the sharp intensification of the surface wind near the Caucasian coast during Novorossiysk bora in 20–22 August 2005. This case is studied using coupled mesoscale air-sea model NOW (NEMO — Nucleus for European Modelling of the Ocean, OASIS — Ocean Atmosphere Sea Ice Soil, WRF — Weather Research and Forecasting) with spatial resolution of 1 km. Modelling results are compared with the available observation data. Vertical structure of wind and temperature fields of the bora is studied. Using modelling results, we consider various reasons for the significant, more than 6 °C, drop of the sea surface temperature (SST) near Novorossiysk during 20–22 August. We consider various factors of the SST decrease, such as: vertical turbulent mixing and the entrainment of cold water from the thermocline into the upper quasihomogenous layer; ascend of cold water from lower levels and horizontal advection of water; latent and sensible heat fluxes from the sea surface. It is concluded, that the main reason for the SST decrease was dynamical instability in the sea upper layer, whereas temperature advection and sea-atmosphere heat exchange did not play an important role.
Keywords: Novorossiysk bora, coupled mesoscale modelling
Full text


  1. Veltishev N. F., Stepanenko V. M., Mezometeorologicheskie protsessy (Mesometeorological processes), Moscow: MSU, 2006, 101 p. (in Russian).
  2. Gavrikov A. V., Ivanov A. Yu., Anomalously Strong Bora over the Black Sea: Observations from Space and Numerical Modeling, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 5, pp. 546–556, DOI: 10.1134/S0001433815050059.
  3. Gill A. E., Atmosphere – Ocean Dynamics, Intern. Geophysics Series, Vol. 30, New York; London: Academic Press, 1982, 680 p.
  4. Efimov V. V., Barabanov V. S. (2013a), Black Sea Bora Modeling, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 6, pp. 632–641, DOI: 10.1134/S0001433813060066.
  5. Efimov V. V., Barabanov V. S. (2013b), Gustiness of the Novorossiysk bora, Russian Meteorology and Hydrology, 2013, Vol. 38, No. 12, pp. 840–845, DOI: 10.3103/S1068373913120054.
  6. Efimov V. V., Mikhaylova N. V., The Mesoscale atmospheric vortex as a manifestation of the Novorossiysk bora, Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 4, pp. 449–458, DOI: 10.1134/S000143381704003X.
  7. Ivanov A. Yu., Bora in Novorossiysk: A Look from Space, Issledovanie Zemli iz kosmosa, 2008, No. 2, pp. 68–83 (in Russian).
  8. Shestakova A. A., Moiseenko K. B., Toropova P. A., Hydrodynamic Aspects of the Novorossiysk Bora Episodes in 2012–2013, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 5, pp. 602–614, DOI: 10.1134/S0001433815040118.
  9. Iarovaia D. A., Efimov V. V., Development of Cold Sea Surface Temperature Anomalies in the Black Sea, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 4, pp. 413–424, DOI: 10.31857/S0002351521040118.
  10. Iarovaya D. A., Efimov V. V., Barabanov V. S., Mizyuk A. A., Response of the Black Sea Upper Layer to the Cyclone Passage on September 25–29, 2005, Russian Meteorology and Hydrology, 2020, Vol. 45, No. 10, pp. 701–711, DOI: 10.3103/S1068373920100040.
  11. Efimov V. V., Komarovskaya O. I., Spatial-temporal structure of bora in Yalta, Physical Oceanography, 2015, No. 3, pp. 3–13, DOI: 10.22449/1573-160X-2015-3-3-13.
  12. Efimov V. V., Komarovskaya O. I., Bayankina T. M., Temporal characteristics and synoptic conditions of extreme bora formation in Novorossiysk, Physical Oceanography, 2019, Vol. 26, No. 5, pp. 361–373, DOI: 10.22449/1573-160X-2019-5-361-373.
  13. Madec G., NEMO ocean engine, Paris, France: Inst. Pierre-Simon Laplace, 2016,
  14. Samson G., Masson S., Lengaigne M., Keerthi M. G., Vialard J., Pous S., Madec G., Jourdain N. C., Jullien S., Menkes C., Marchesiello P., The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity, J. Advances in Modeling Earth Systems, 2014, Vol. 6, pp. 700–722, DOI: 10.1002/2014MS000324.
  15. Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Barker D., Duda M. G., Powers J. G., A description of the Advanced Research WRF version 3, NCAR Technical Note, 2008, 113 p.,
  16. Valcke S., The OASIS3 coupler: A European climate modelling community software, Geoscientific Model Development, 2013, Vol. 6, Issue 2, pp. 373–388, DOI: 10.5194/gmd-6-373-2013.