Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 41-48
Comparison of two-position lidar systems in the problem of backscatter signal interpretation
G.P. Arumov
1 , A.V. Bukharin
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 21.02.2023
DOI: 10.21046/2070-7401-2023-20-2-41-48
Elastic scattering lidars are considered, which include a coaxial sounding scheme and an additional receiving channel. In the optimal scheme, the angular dimensions of the probing beam and the fields of view of the receiving channels practically coincide. For such schemes, the geometric form factor of the additional and main receiving channels can be measured using standard perforated screens with monodisperse holes. These screens can be used to simulate a homogeneous atmosphere backscatter signal without attenuation (response function) on fixed range paths. It is shown that the calibration of the optimal scheme for measuring the backscattering coefficient can be carried out both using standard scattering surfaces with a known backscattering angular pattern, and using reflecting spheres. The interpretation of the microphysical parameters of the scattering layer is based on the use of an equivalent layer model consisting of monodisperse particles. An indicator of the equivalent cross section of particles inside the layer is the angular size of the halo around the beam. The angular size of the beam can be measured using standard perforated screens. The angular size of the beam passing through such a screen increases by a given value. Remote measurements of the microstructure of the equivalent layer using lidars can be supplemented by contact methods for detecting back and forward scattering signals from individual particles of the scattering medium. The described technique makes it possible to determine the concentration of equivalent particles from the backscatter signal.
Keywords: coaxial circuit, optimal circuit, backscatter coefficient, lidar calibration, equivalent cross section, non-normalized moment, equivalent medium, concentration, remote sensing, reflecting sphere, perforated screen, scattering layer, geometric form factor, elastic scattering lidar
Full textReferences:
- Arumov G. P., Bukharin A. V., Combination of local and lidar methods in the problem of determining the microphysical properties of a scattering medium, Trudy MFTI, 2022, Vol. 14, No. 4, pp. 133–143 (in Russian).
- Arumov G. P., Bukharin A. V., Makarov V. S., Three-dimensional reflecting objects in the problem of modeling a lidar signal from a scattering layer, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 328–334 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-328-334.
- Arumov G. P., Bukharin A. V., Linkin V. M., Lipatov A. N., Lyash A. N., Makarov V. S., Pershin S. M., Tiurin A. V., Compact aerosol lidar for Martian atmosphere monitoring according to the NASA Mars Surveyor Program’98, Proc. 6 th Intern. Conf. Industrial Lasers and Laser Applications’98, 7–29 June, 1998, Shatura, Moscow Region, 1999, Vol. 3688, 7 p., https://doi.org/10.1117/12.337558.
- Bukharin A. V., Arumov G. P., Blikh Yu. M., Makarov V. S., Turin A. V., Modulation of diode laser radiation for the formation of a distance-independent backscattered signal, Quantum Electronics, 2016, Vol. 46, No. 10, pp. 877–882, DOI: 10.1070/QEL16009.
- Chemyakin E., Burton S., Kolgotin A., Müller D., Hostetler C., Ferrare R., Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem, Applied Optics, 2016, Vol. 55, Issue 9, pp. 2188–2202, https://doi.org/10.1364/AO.55.002188.
- Measures R. M., Laser Remote Sensing: Fundamentals and Applications, Hoboken, NJ: John Wiley and Sons, 1983, 912 p.
- Mishchenko M. I., Electromagnetic scattering by nonspherical particles: A tutorial review, J. Quantitative Spectroscopy and Radiative Transfer, 2009, Vol. 110, No. 11, pp. 808–832, https://doi.org/10.1016/j.jqsrt.2008.12.005.
- Pershin S., Linkin V., Makarov V., Prochazka I., Hamal K., Spaceborn laser altimeter based on the single photon diode receiver and semiconductor laser transmitter, Conf. Lasers and Electro-Optics (GLEO), 12–17 May, 1991, Baltimore, Maryland, 1991, Art. No. CFI1.
- Pershin S. M., Sobisevich A. L., Grishin M. Ya., Gravirov V. V., Zavozin V. A., Kuzminov V. V., Lednev V. N., Likhodeev D. V., Makarov V. S., Myasnikov A. V., Fedorov A. N., Volcanic activity monitoring by unique LIDAR based on a diode laser, Laser Physics Letters, 2020, Vol. 17, No. 11, pp. 115607–115613, DOI: 10.1088/1612-202X/abbedc.
- Veselovskii I., Kolgotin A., Griaznov V., Müller D., Wandinger U., Whiteman D. N., Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Applied Optics, 2002, Vol. 41, No. 18, pp. 3685–3699, https://doi.org/10.1364/AO.41.003685.
- Veselovskii I., Whiteman D. N., Korenskiy M., Suvorina A., Perez-Ramirez D., Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction, Atmospheric Measurement Techniques, 2015, Vol. 8, pp. 4111–4122, https://doi.org/10.5194/amt-8-4111-2015, 2015.
- Yan D., Di H., Zhao J., Wen X., Wang Y., Song Y., Hua D., Improved algorithm of aerosol particle size distribution based on remote sensing data, Applied Optics, 2019, Vol. 58, pp. 8075–8082, https://doi.org/10.1364/AO.58.008075.