ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 273-280

Aerosol pollution of the atmosphere according to the data of a lidar complex and a solar photometer

D.A. Samulenkov 1 , M.V. Sapunov 1 , A.Yu. Lyanguzov 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 05.04.2023
DOI: 10.21046/2070-7401-2023-20-2-273-280
In St. Petersburg, from 2014 to the present, studies of atmospheric pollution by aerosol particles have been carried out using an aerosol Nd:YAG laser of a stationary lidar complex of the Resource Center “Observatory of Ecological Safety”, Science Park, St. Petersburg State University. The studies are of an important applied nature, as they allow tracking changes in the content of aerosol pollutants over a metropolis, which have a direct impact on health and the quality of life of the population living in the study area. In this paper, the authors compared the aerosol optical depth measured by the stationary lidar complex and a solar photometer in order to assess the similarities and differences in the trends in the data obtained by the lidar and the photometer in different seasons in St. Petersburg and Peterhof. The devices are located at a distance of 25.8 km. The study of aerosol optical depth in the air column from the lower measurement point to the upper part of the troposphere was carried out from 2014 to 2021, the measurement data obtained by the instruments on the same day were compared. Comparison of 56 lidar and photometer measurements for the 532 nm channel and 52 measurements for the 355 nm channel was performed. The aerosol thickness measured by the lidar and the photometer is higher on spring and summer days. At a wavelength of 355 nm, it is: 0.15 and 0.12 in spring, 0.26 and 0.16 in summer, 0.12 and 0.10 in autumn, 0.12 and 0.08 in winter for the spectrophotometer and the lidar, respectively. At a wavelength of 532 nm, it is 0.09 and 0.05 in spring, 0.14 and 0.06 in summer, 0.08 and 0.02 in autumn, 0.08 and 0.02 in winter. The increased content of aerosols in spring and summer can be explained by the rise of aerosol particles together with convection currents during the heating of the planetary boundary layer. The optical depth data of the lidar and photometer are in a satisfactory agreement.
Keywords: lidar, aerosol, optical depth, photometer
Full text


  1. Volkov N. N., Mnogovolnovaya lidarnaya sistema dlya opredeleniya fizicheskikh parametrov troposfernogo aerozolya: metodika rascheta parametrov i analiza dannykh: Dis. kand. tekhn. nauk (Multiwavelength lidar system for measuring the physical properties of tropospheric aerosol: a technique for calculating parameters and analyzing data, Cand. tech. sci. thesis), Moscow: MIIGAIK, 2013, 135 p. (in Russian).
  2. Volkova K. A., Poberovsky A. V., Timofeev Yu. M., Ionov D. V., Holben B. N., Smirnov A., Slutsker I., Aerosol optical characteristics retrieved from measurements of CIMEL sun photometer (AERONET) near Saint Petersburg, Optika atmosfery i okeana, 2018, Vol. 31, No. 6, pp. 425–431 (in Russian), DOI: 10.15372/AOO20180601.
  3. Ivlev L. S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical composition and structure of atmospheric aerosols), Leningrad: Izd. Leningradskogo universiteta, 1982, 366 p. (in Russian).
  4. Althausen D., Müller D., Ansmann A., Wandinger U., Hube H., Clauder E., Zoerner S., Scanning 6-wave length 11-channel aerosol lidar, J. Atmospheric and Oceanic Technology, 2000, No. 17, pp. 1469–1482, DOI: 10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.
  5. Calinoiu D. G., Trif-tordai G., Ionel I., Cioabla A. E., Sun Photometer — Remote Sensing For Aerosol assessment, J. Environmental Protection and Ecology, 2018, Vol. 19, Issue 2, pp. 462–470.
  6. Chaikovsky A., Ivanov A., Balin Yu., Elnikov A., Tulinov G., Plusnin I., Bukin O., Chen B., Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions, Proc. SPIE — The Intern. Society for Optical Engineering, 2006, Vol. 6160, Art. No. 616035, DOI: 10.1117/12.675920.
  7. Hoff R. M., McCann K. J., Demoz B., Reichard J., Whiteman D. N., McGee T., McCormick M. P., Philbrick C. R., Strawbridge K., Moshary F., Gross B., Ahmed S., Venable D., Joseph E., Regional East Atmospheric Lidar Mesonet: REALM, ILRC, European Space Agency, 2002, pp. 1–4.
  8. Khor W. Y., Hee W. Sh., Tan F., Lim H. S., Jafri M. Z. M., Holben B., Comparison of Aerosol optical depth (AOD) derived from AERONET sunphotometer and Lidar system, IOP Conf. Ser.: Earth and Environmental Science, 2014, Vol. 20, Art. No. 012058, DOI: 10.1088/1755-1315/20/1/012058.
  9. Klett J. D., Lidar inversion with variable backscatter/extinction ratios, Applied Optics, 1985, Vol. 24, pp. 1638–1643,
  10. Nishizawa T., Sugimoto N., Matsui I., Shimizu A., Higurashi A., Jin Y., The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress, EPJ Web Conf., 2016, Vol. 119, Art. No. 19001, DOI: 10.1051/epjconf/201611919001.
  11. Silva R. A., Adelman Z., Fry M. M., West J. J., The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution, Environmental Health Perspective, 2016, Vol. 124, pp. 1776–1784. DOI: 10.1289/EHP177.
  12. Sinyuk A., Holben B. N., Eck T. F., Giles D. M., Slutsker I., Korkin S., Schafer J. S., Smirnov A., Sorokin M., Lyapustin A., The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmospheric Measurement Techniques, 2020, Vol. 13, Issue 6, pp. 3375–3411, DOI: 10.5194/amt-13-3375-2020.
  13. Sugimoto N., Nishizawa T., Shimizu A., Matsui I., Aerosol characterization with lidar methods, Proc. SPIE — The Intern. Society for Optical Engineering, 2014, Vol. 9232, pp. 117–122, DOI: 10.1117/12.2064957.
  14. Wang L., Macak M. B., Stanic S., Bergant K., Gregoric A., Drinovec L., Mocnik G., Yin Z., Yi Y., Müller D., Wang X., Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley, Remote Sensing, 2022, Vol. 14, Issue 14, Art. No. 3482, DOI: 10.3390/rs14143482.
  15. Welton E., Stewart S., Lewis J., Belcher L., Campbell J., Lolli S., Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL, EPJ Web Conf., 2018, Vol. 176, Art. No. 09003, DOI: 10.1051/epjconf/201817609003.
  16. Xun L., Lu H., Qian C., Zhang Y., Lyu S., Li X., Analysis of Aerosol Optical Depth from Sun Photometer at Shouxian, China, Atmosphere, 2021, Vol. 12, Issue 9, Art. No. 1226, DOI: 10.3390/atmos12091226.
  17. Zhang W., Gu X., Xu H., Yu T., Zheng F., Assessment of OMI near-UV aerosol optical depth over Central and East Asia, J. Geophysical Research: Atmospheres, 2016, Vol. 121, pp. 382–398, DOI: 10.1002/2015JD024103.