ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 246-261

Satellite microwave radiometric measurements of extreme temperature rise in East Antarctica in March 2022

L.M. Mitnik 1 , V.P. Kuleshov 1 , M.L. Mitnik 1 , A.V. Baranyuk 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 07.12.2022
DOI: 10.21046/2070-7401-2023-20-2-246-261
The results of sensing of East Antarctica and the adjoining areas of the Southern Ocean by microwave satellite radiometers MTVZA-GYa at frequencies ν = 10–190 GHz and AMSR2 at ν = 6–89 GHz during the warm and humid air (atmospheric river — AR) invasion from the Tasmanian area in March 2022 are presented. The surface air warming caused by AR was recorded by the Automatic Weather Station (AWS) at the coast and at the Vostok, Concordia and Dome CII stations in East Antarctica. The variability of atmospheric characteristics above Antarctica was studied using readings of radiosondes launched from Casey station at the coast and Concordia station at a height of 3230 m and time series of brightness temperatures averaged over a circular area 200 km in diameter with the center at a distance of ~200 km from Concordia station. The influence of air and surface temperature and atmospheric water vapor content variations on brightness temperature Tb(ν) variations was estimated from the results of modeling of microwave radiation transfer in the atmosphere – firn system using radiosonde profiles from Concordia station. It was shown that the increase in the Tb (ν) at frequencies 89–92 GHz of a large part of East Antarctica was caused mainly by an increase in the firn temperature. The increase at frequencies ~176–190 GHz in the area of the water vapor absorption line was caused by the increase of both the firn temperature and air temperature and humidity. Based on measurements of brightness temperature Tb (ν) over the open ocean at frequencies in the atmospheric transparency windows ~6–48 and 88–92 GHz, the wind speed W, cloud liquid water content Q and atmospheric water vapor content V were determined and the temporal variability of parameters in the AR area was studied.
Keywords: Antarctica, air temperature anomaly, atmospheric river, microwave radiometry, AMSR2 GCOM-W1, Meteor-M No. 2-2 MTVZA-GYa, brightness temperature, modeling, time series, automatic weather stations
Full text


  1. Mitnik M. L., Mitnik L. M., Retrieval of total water vapor content and total cloud liquid water content over the ocean by microwave sensing from DMSP, TRMM, Aqua and ADEOS-II satellites, Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 34‒41 (in Russian).
  2. Mitnik L. M., Mitnik M. L., Algorithm of sea surface wind speed retrieval from Aqua AMSR-E measurements, Issledovanie Zemli iz kosmosa, 2011, No. 6, pp. 34‒44 (in Russian).
  3. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Sudden stratospheric warming over Antarctica in September 2019 from the data of the MTVZA-GYa radiometer on the Meteor-M No. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 229–242 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-229-242.
  4. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Sudden stratospheric warming in January 2021 from microwave measurements from Meteor-M No. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 139–148 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-288-297.
  5. Chernyavsky G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Cherny I. V., Microwave sensing of the Ocean, atmosphere and land surface from Meteor-M No. 2 satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 78–100 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-78-100.
  6. Chernyavsky G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Streltsov A. M., Evseev G. E., Cherny I. V., Brightness temperature modeling and first results derived from the MTVZA-GY radiometer of the Meteor-M No. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 51–65 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-51-65.
  7. Brucker L., Picard G., Arnaud L., Barnola J.-M., Schneebel M., Brunail H., Lefebvre E., Fily M., Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciology, 2011, Vol. 57, No. 201, pp. 171–182.
  8. Buehler S. A., Kuvatov M., Sreerekha T. R., John V. O., Rydberg B., Eriksson P., Notholt J., A cloud filtering method for microwave upper tropospheric humidity measurements, Atmospheric Chemistry and Physics, 2007, Vol. 7, pp. 5531–5542.
  9. Buehler S. A., Prange M., Mrziglod J., John V. O., Burgdorf M., Lemke O., Opportunistic constant target matching — A new method for satellite intercalibration, Earth and Space Science, 2020, Vol. 7, Art. No. e2019EA000856, 1029/2019EA000856.
  10. Chen R., Bennartz R., Sensitivity of 89–190-GHz microwave observations to ice particle scattering, J. Applied Meteorology and Climatology, 2020, Vol. 59, pp. 1195–1215, DOI: 10.1175/JAMC-D-19-0293.1.
  11. Chung E., Soden B., John V. O., Intercalibrating microwave satellite observations for monitoring long-term variations in upper and midtropospheric water vapor, J. Atmospheric and Oceanic Technology, 2013, Vol. 30, pp. 2303–2319, DOI: 10.1175/JTECH-D-13-00001.1.
  12. Comiso J. C., Polar Oceans from Space, New York: Springer Publ., 2010, 507 p.
  13. Johnson A., Hock R., Fahnestock M., Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data, J. Glaciology, 2022, Vol. 68, Issue 269, pp. 533–546,
  14. Kar R., Aksoy M., Kaurejo D., Atrey P., Devadason J. A., Antarctic firn characterization via wideband microwave radiometry, Remote Sensing, 2022, Vol. 14, No. 9, Art. No. 2258,
  15. Macelloni G., Brogioni M., Pampaloni P., Cagnati A., Multifrequency microwave emission from the Dome-C area on the East Antarctic plateau: Temporal and spatial variability, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 7, pp. 2029–2039,
  16. Matrosov S. Y., Characteristics of landfalling atmospheric rivers inferred from satellite observations over the Eastern North Pacific Ocean, Monthly Weather Review, 2013, Vol. 141, No. 11, pp. 3757–3768.
  17. Melsheimer C., Spreen G., Ye Y., Shokr M., Antarctic sea ice types from active and passive microwave remote sensing: preprint, Cryosphere: Discussion, 2022, 23 p.,
  18. Meyer H., Katurji M., Appelhans T., Müller M. U., Nauss T., Roudier P., Zawar-Reza P., Mapping daily air temperature for Antarctica based on MODIS LST, Remote Sensing, 2016, Vol. 8, Issue 9, Art. No. 732, DOI: 10.3390/rs8090732.
  19. Mitnik L. M., Mitnik M. L., Zabolotskikh E. V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 156–165.
  20. Mitnik L., Kuleshov V., Mitnik M., Streltsov A. M., Cherniavsky G., Cherny I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M No. 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 7, pp. 3036–3045,
  21. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Baranyuk A. V., Passive microwave observations of South America and surrounding oceans from Russian Meteor-M No. 2 and Japan GCOM-W1 satellites, Intern. J. Remote Sensing, 2018, Vol. 39, No. 13, pp. 4513–4530, DOI: 10.1080/01431161.2018.1425569.
  22. Mitnik L., Kuleshov V., Panfilova M., Karaev V., Mitnik M., Baranyuk A., Satellite study of atmospheric cyclones and rivers around Antarctica, Proc. IGARSS, 2021, pp. 7071–7074, DOI: 10.1109/IGARSS47720.2021.9553258.
  23. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Chernyavski G. M., Cherny I. V., Streltsov A. M., Microwave radiometer MTVZA-GY on new Russian satellite Meteor-M No. 2-2 and sudden stratospheric warming over Antarctica, IEEE J. Selected Topics of Applied Remote Sensing, 2022, Vol. 15, pp. 820–830, DOI: 10.1109/JSTARS.2021.3133425.
  24. Mo Z., Zeng Z., Huang L., Liu L., Zhou L., Huang L., Zhou L., Ren C., He H., Investigation of Antarctic precipitable water vapor variability and trend from 18 year (2001 to 2018) data of four reanalyses based on radiosonde and GNSS observations, Remote Sensing, 2021, Vol. 13, Issue 19, Art. No. 3901,
  25. Moradi I., Ferraro R., Eriksson P., Weng F., Intercalibration and validation of observations from ATMS and SAPHIR microwave sounders, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 11, pp. 5915–5925.
  26. Narvekar P. S., Heygster G., Jackson T. J., Bindlish R., Macelloni G., Notholt J., Passive polarimetric microwave signatures observed over Antarctica, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 3, pp. 1059–1075.
  27. Pagano T. S., Chahine M. T., Fetzer E. J., The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft: A general remote sensing tool for understanding atmospheric structure, dynamics and composition, Proc. SPIE, 2010, Vol. 7827, DOI: 10.1117/12.865335.
  28. Payne V. H., Delamere J. S., Cady-Pereira K. E., Gamache R. R., Moncet J.-L., Mlawer E. J., Clough S. A., Air-broadened half-widths of the 22- and 183-GHz water-vapor lines, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 11, pp. 3601–3617.
  29. Picard G., Royer A., Arnaud L., Fily M., Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica, Cryosphere, 2014, Vol. 8, Issue 3, pp. 1105–1119.
  30. Pohl B., Favier V., Wille J., Udy D. G., Vance T. R., Pergaut J., Dutrievoz N., Blanchet J., Kittel C., Amory C., Krinner G., Gordon F., Relationship between weather regimes and atmospheric rivers in East Antarctica, J. Geophysical Research: Atmospheres, 2021, Vol. 126, Issue 24, Art. No. e2021JD035294,
  31. Pope A., Wagner P., Johnson R., Shutler J. D., Baeseman J., Newman L., Community review of Southern Ocean satellite data needs, Antarctic Science, 2017, Vol. 29, No. 2, pp. 97–138.
  32. Ricaud P., Carminati F., Courcoux Y., Pellegrini A., Attié J.-L., El Amraoui L., Abida R., Genthon C., August T., Warner J., Statistical analyses and correlation between tropospheric temperature and humidity at Dome C, Antarctica, Antarctic Science, 2014, Vol. 26, Issue 3, pp. 290–308.
  33. Ricaud P., Grigioni P., Zbinden R., Attié J.-L., Genoni L., Galeandro A., Moggio L., Montaguti S., Petenko I., Legovini P., Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antarctica, 2009–2014, Antarctic Science, 2015, Vol. 27, Issue 6, pp. 598–616.
  34. Ricaud P., Grigioni P., Roehrig R., Durand P., Veron D. E. (2020a), Trends in atmospheric humidity and temperature above Dome C, Antarctica evaluated from observations and reanalyses, Atmosphere, 2020, Vol. 11, Issue 8, Art. No. 836,
  35. Ricaud P., Del Guasta M., Bazile E., Azouz N., Lupi A., Durand P., Attié J.-L., Veron D., Guidard V., Grigioni P. (2020b), Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica, Atmospheric Chemistry and Physics, 2020, Vol. 20, pp. 4167–4191.
  36. Sims G., Ashley M. C. B., Cui X., Everett J. R., Feng L. L., Gong X., Hengst S., Hu Z., Kulesa C., Lawrence J. S., Luong-Van D. M., Ricaud P., Shang Z., Storey J. W. V., Wang L., Yang H., Yang J., Zhou X., Zhu Z., Precipitable water vapor above Dome A, Antarctica, determined from diffuse optical sky spectra, Publications of the Astronomical Society of the Pacific, 2012, Vol. 124, pp. 74–83.
  37. Surdyk S., Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach, Remote Sensing of Environment, 2002, Vol. 80, No. 2, pp. 256–271.
  38. Turner J., Lu H., King J. C., Carpentier S., Lazzara M., Phillips T., Wille J., An extreme high temperature event in coastal East Antarctica associated with an atmospheric river and record summer downslope winds, Geophysical Research Letters, 2022, Vol. 49, Art. No. e2021GL097108,
  39. Ye H., Fetzer E. J., Bromwich D. H., Fishbein E. F., Olsen E. T., Granger S. L., Lee S.-Y., Chen L., Lambrigtsen B. H., Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer, Geophysical Research Letters, 2007, Vol. 34, Art. No. L19701, DOI: 10.1029/2006GL028547.