ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 253-268

Intensive development of cyanobacteria in the southern part of the Caspian Sea

A.V. Medvedeva 1 , S.V. Stanichny 1 , A.A. Kubryakov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 15.02.2023
DOI: 10.21046/2070-7401-2023-20-1-253-268
On the basis of medium resolution optical satellite data from 2001 to 2022, cases of intensive development of cyanobacteria in the southern part of the Caspian Sea were identified — mainly in July and August in 2005, 2008–2010, 2017, 2018 and 2021. In 2009, intensive development of cyanobacteria was observed in September and early October, and in 2021, the first signs of intensive development of cyanobacteria were recorded in June. For all noted cases, stages of development are detected and spatio-temporal changes are described. We also analyzed the background conditions that could contribute to the intensive development of cyanobacteria — changes in sea surface temperature, wind speed and stability in summer, and an increase in the concentration of chlorophyll a in periods preceding the development of cyanobacteria. In particular, it was noted that the intensive development of cyanobacteria occurs mainly in conditions of high heating of surface waters, against the background of the predominance of weak and stable winds. Probably, the vital activity of other phytoplankton species is an additional source of nutrients — higher concentrations of chlorophyll a are recorded before periods of intensive development of cyanobacteria. In addition, an increase in sea surface temperature was noted in the area of intensive development of cyanobacteria. According to AVHHR NOAA 18 data, the temperature contrast between the area with floating cyanobacteria and the surrounding areas can exceed 4 °C.
Keywords: South Caspian, cyanobacteria, intensive development of cyanobacteria, surface temperature, wind speed, chlorophyll a concentration, optical data, satellite data, Nodularia Spumigena Mert.
Full text

References:

  1. Abdullaev S. F., Kompleksnye issledovaniya pylevykh i gazovykh primesei v aridnykh zonakh i ikh vliyanie na regional’nyi klimaticheskii rezhim yugo-vostochnoi chasti Tsentral’noi Azii: Diss. dokt. fiz.-mat. nauk (Comprehensive studies of dust and gas impurities in arid zones and their influence on the regional climatic regime of the southeastern part of Central Asia, Dr. phys. math. sci. thesis), Dushanbe, 2014, 315 p. (in Russian).
  2. Bogdanov N. I., Abramov B. V., Paramonov V. K., Biological aspects of the fight against “blooming” of water bodies by blue-green algae, Astrakhanskii vestnik ekologicheskogo obrazovaniya, 2004, Vol. 1–2, pp. 61–62 (in Russian).
  3. Vershinin A. O., Moruchkov A. A., Potentially toxic algae in the northeastern Black Sea coastal phytoplankton in 2000–2002, Ehkologiya morya, 2003, Vol. 64, pp. 45–50 (in Russian).
  4. Voloshko L. N., Pinevich A. V., Kopetskii I., Titova N. N., Khrouzek P., Zelik P., Toxins produced by cyanobacteria during the “bloom” of water in the Lower Suzdal Lake (St. Petersburg, Russia), Al’gologiya, 2010, Vol. 20, No. 2, pp. 210–233 (in Russian).
  5. Gidrometeorologiya i gidrokhimiya morei. T. VI. Kaspiiskoe more (Hydrometeorology and hydrochemistry of the seas. Vol. VI. Caspian Sea), Saint Petersburg: Gidrometeoizdat, 1992, 360 p. (in Russian).
  6. Zonn I. S., Kostyanoi A. G., Kosarev A. N., Zhil’tsov S. S., Kaspiiskoe more: Entsiklopediya (Caspian Sea: Encyclopedia), Moscow: Vostochnaya kniga, 2016, 560 p. (in Russian).
  7. Kalinskaya D. V., Medvedeva A. V., Aleskerova A. A., Influence of dust transport on the intensity of cyanobacterial bloom in Caspian Sea, Optika atmosfery i okeana, 2021, Vol. 34, No. 9, pp. 689–695 (in Russian), DOI: 10.15372/AOO20210904.
  8. Kaspiiskoe more: Gidrologiya i gidrokhimiya (Caspian Sea: Hydrology and hydrochemistry), S. S. Baidin, A. N. Kosarev (eds.), Moscow: Nauka, 1986, 261 p. (in Russian).
  9. Aleskerova A. A., Kubryakov A. A., Stanichny S. V., Lishaev P. N., Mizyuk A. I., Cyanobacteria Bloom in the Azov Sea According to Landsat Data, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 9, pp. 1416–1426, DOI: 10.1134/S0001433819090056.
  10. Bigham S., Zarei Darki B., Patimar R., Jorjani E., Physical-Chemical Factors Affecting Diversity and Distribution of Blue-green Algae in the Southern Caspian, J. Phycological Research, 2019, Vol. 3, No. 1, pp. 275–286, DOI: 10.29252/JPR.3.1.275.
  11. Knysh V., Ibrayev R., Korotaev G., Inyushina N., Seasonal variability of climatic currents in the Caspian Sea reconstructed by assimilation of climatic temperature and salinity into the model of water circulation, Izvestiya, Atmospheric and Oceanic Physics, 2008, Vol. 44, pp. 236–249, DOI: 10.1134/S0001433808020114.
  12. Kopelevich O. V., Vazyulya S. V., Grigoriev A. V., Khrapko A. N., Sheberstov S. V., Sahling I. V., Penetration of visible solar radiation in waters of the Barents Sea depending on cloudiness and coccolithophore blooms, Oceanology, 2017, Vol. 57, pp. 402–409, DOI: 10.1134/S0001437017020096.
  13. Kopylov A. I., Kosolapov D. B., Zabotkina E. A., Distribution of picocyanobacteria and virioplankton in mesotrophic and eutrophic reservoirs: The role of viruses in mortality of picocyanobacteria, Biology Bull., 2010, Vol. 37, pp. 565–573, DOI: 10.1134/S1062359010060038.
  14. Kubryakov A. A., Lishaev P. N., Aleskerova A. A., Stanichny S. V., Medvedeva A. A., Spatial distribution and interannual variability of cyanobacteria blooms on the North-Western shelf of the Black Sea in 1985-2019 from satellite data, Harmful Algae, 2021, Vol. 110, pp. 102–128, DOI: 10.1016/j.hal.2021.102128,
  15. Naghdi K., Moradi M., Kabiri K., Rahimzadegan M., The effects of cyanobacterial blooms on MODIS-L2 data products in the southern Caspian Sea, Oceanologia, 2018, Vol. 60, No. 3, pp. 367–377, DOI: 10.1016/j.oceano.2018.02.002.
  16. Nasrollahzadeh H., Makhlough A., Pourgholam R., Vahedi F., Qanqermeh A., Foong S., The study of Nodularia spumigena bloom event in the southern Caspian Sea, Applied Ecology and Environmental Research, 2011, Vol. 9, pp. 141–155, DOI: 10.15666/aeer/0902_141155.
  17. Oyama Y., Matsushita B., Fukushima T., Cyanobacterial Blooms as an Indicator of Environmental Degradation in Waters and Their Monitoring Using Satellite Remote Sensing, Aquatic Biodiversity Conservation and Ecosystem Services, 2016, pp. 71–85, DOI: 10.1007/978-981-10-0780-4_6.
  18. Roohi A., Kideys A. E., Sajjadi A., Hashemian A., Pourghola R., Fazli H., Khanari A. G., Eker-Develi E., Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore Mnemiopsis leidyi, Biological Invasions, 2010, Vol. 12, pp. 2343–2361, DOI: 10.1007/s10530-009-9648-4.
  19. Rubakina V. A., Kubryakov A. A., Stanichny S. V., Seasonal Variability of the Diurnal Cycle of the Black Sea Surface Temperature from the SEVIRI Satellite Measurements, Physical Oceanography, 2019, Vol. 26, No. 2, pp. 157–169, DOI: 10.22449/1573-160X-2019-2-157-169.
  20. Ward D. M., Castenholz R. W., Miller S. R., Cyanobacteria in Geothermal Habitats, Ecology of cyanobacteria II: their diversity in space and time, 2012, pp. 39–63, DOI: 10.1007/978-94-007-3855-3_3.
  21. Wynne T. T., Stumpf R. P., Tomlinson M. C., Warner R. A., Tester P. A., Dyble J., Fahnenstiel G. L., Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes, Intern. J. Remote Sensing, 2008, No. 29, pp. 3665–3672, DOI: 10.1080/01431160802007640.
  22. Zakharkov S. P., Selina M. S., Vanin N. S., Shtraikhert E. A., Biebov N., Phytoplankton characteristics and hydrological conditions in the western part of the Sea of Okhotsk in the spring of 1999 and 2000 based on expeditionary and satellite data, Oceanology, 2007, Vol. 47, pp. 519–530, DOI: 10.1134/S0001437007040091.