ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 229-241

Damping of gravity waves on fragmented ice

G.E. Khazanov 1, 2 , S.A. Ermakov 1, 2, 3 , V.A. Dobrokhotov 1, 2 , G.V. Leshchev 1, 2 , A.V. Kupaev 1 , O.A. Danilicheva 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
3 Volga State University of Water Transport, Nizhny Novgorod, Russia
Accepted: 12.01.2023
DOI: 10.21046/2070-7401-2023-20-1-229-241
It is well known that marginal ice zones are characterized by different forms of initial stages of ice such as, e.g., grease, pancake, fragmented ice etc. Such initial forms of ice act as surface wave absorbers and thus affect microwave radar backscattering. As a result, mapping of boundaries between solid ice and open water areas using radar may become rather complicated. The motivation of this study is to improve our understanding of the process of wave damping due to ice floes for elaboration of physical models of wave damping. The paper presents the description and results of special field experiments to study the damping of wind waves of various lengths in the presence of ice floes imitators, as well as the results of numerical simulations of the attenuation of a gravity waves in the presence of ice floes and a comparison with the results of experiments One of the interesting results of the investigated dependence of the damping coefficient on the ratio of the floe size to the wavelength, both in full-scale and in numerical experiments, was the presence of a local maximum for waves with lengths of the order of the floe size. A physical interpretation of the mechanism of damping of gravity waves in the presence of ice was given, taking into account the added mass of ice floes.
Keywords: gravity wave damping, initial stages of ice, remote sensing, added mass
Full text

References:

  1. Ardhuin F., Sutherland P., Doble M., Wadhams P., Ocean waves across the arctic: attenuation due to dissipation dominates over scattering for periods longer than 19 s., Geophysical Research Letters, 2016, Vol. 43, No. 11, pp. 5775–5783.
  2. Bai W., Zhang T., McGovern D., Response of small sea ice floes in regular waves: A comparison of numerical and experimental results, Ocean Engineering, 2017, Vol. 129, pp. 495–506, DOI: 10.1016/j.oceaneng.2016.10.045.
  3. Boutin G., Ardhuin F., Dumont D., Sevigny C., Girard-Ardhuin F., Accensi M., Floe Size Effect on Wave-Ice Interactions: Possible Effects, Implementation in Wave Model, and Evaluation, J. Geophysical Research: Oceans, 2018, Vol. 123, No. 7, pp. 4779–4805, https://doi.org/10.1029/2017JC013622.
  4. Cheng S., Rogers W. E., Thomson J., Smith M., Doble M. J., Wadhams P., Kohout A. L., Lund B., Persson O. P.G., Collins C. O., Ackley S., Montiel F., Shen H. H., Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone, J. Geophysical Research, 2017, Vol. 122, No. 11, pp. 8770–8793, DOI: 10.1002/2017JC013275.
  5. Doble M. J., De Carolis G., Meylan M. H., Bidlot J.-R., Wadhams P., Relating wave attenuation to pancake ice thickness, using field measurements and model results: Waves in Pancakes, Geophysical Research Letters, 2015, Vol. 42, No. 11, pp. 4473–4481, DOI: 10.1002/2015GL063628.
  6. Dumas-Lefebvre E., Dumont D., Aerial observations of sea ice break-up by ship waves, The Cryosphere Discussions, 2021, 26 p.
  7. Ermakov S. A., Lazareva T. N., Leshev G. V., Vostryakova D. V., Experimental study of wave damping due to ice floes in application to radar remote sensing of the marginal ice zone, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions: Proc. SPIE, 2020, Vol. 11529, Art. No. 1152909, DOI: 10.1117/12.2574082.
  8. Hersbach H., CMOD5. An improved geophysical model function for ERS C-band scatterometry, Technical Memorandum, Reading, UK: ECMWF, 2003, Vol. 395, 50 p.
  9. Johannessen O. M., Hibler W. D., William E., Campbell J., Marginal ice zones: a description of air-ice-ocean interactive processes, models and planned experiments, Arctic Technology and Policy: Proc. 2nd Annual MIT Sea Grant Conf., 1983, pp. 133–146.
  10. Keller J. B., Gravity waves on ice-covered water, J. Geophysical Research: Oceans, 1998, Vol. 103, No. C4, pp. 7663–7669.
  11. Kennard E. H., Irrotational flow of frictionless fluids, mostly of invariable density, David Taylor Model Basin Report, 1967, Vol. 2229, 450 p.
  12. Khazanov G. E., Ermakov S. A., Dobrokhotov V. A., Vostryakova D. V., Lazareva T. N., Wave tank modeling of the damping of gravity waves due to ice floes in application to ocean remote sensing, The Intern. Society for Optical Engineering: Proc. SPIE, 2021, Vol. 11857, Art. No. 118570U, https://doi.org/10.1117/12.2600164.
  13. Kohout A. L., Meylan M. H., An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone, J. Geophysical Research: Oceans, 2008, Vol. 113, No. C9.
  14. Marquart R., Bogaers A., Skatulla S., Alberello A., Tofolli A., Schwarz C., Vichi M., A Computational Fluid Dynamics Model for the Small-ScaleDynamics of Wave, Ice Floe and Interstitial Grease Ice Interaction, Fluids, 2021, Vol. 6, p. 176.
  15. Massom R., Stammerjohn S., Antarctic sea ice variability: Physical and ecological implications, Polar Science, 2010, Vol. 4, No. 2, pp. 149–458.
  16. Masson D., LeBlond P., Spectral evolution of wind-generated surface gravity waves in a dispersed ice field, J. Fluid Mechanics, 1989, Vol. 202, pp. 43–81.
  17. Meylan M., Yiew L., Bennetts L., French B., Thomas G. (2014a), Surge motion of an ice floe in waves: Comparison of a theoretical and an experimental model, Annals of Glaciology, 2014, Vol. 56, Issue 69, pp. 155–159, DOI: 10.3189/2015AoG69A646.
  18. Meylan M. H., Bennetts L. G., Kohout A. L. (2014b), In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone, Geophysical Research Letters, 2014, Vol. 41, No. 14, pp. 5046–5051, DOI: 10.1002/2014GL060809.
  19. Meylan M. H., Bennets L. G., Doble M., Mosig E. M., Dispersion relations, power laws, and energy loss in waves for the marginal ice zone, J. Geophysical Research: Oceans, 2018, Vol. 123, pp. 3322–3335, https://doi. org/10.1002/2018JC013776.
  20. Newman J. N., Marine hydrodynamics, Cambridge, MA: The MIT Press, 2017, 426 p.
  21. Newyear K., Martin S., Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C4, pp. 7837–7840.
  22. Peters A. S., The effect of a floating mat on water waves, Communications on Pure and Applied Mathematics, 1950, Vol. 3, pp. 319–354.
  23. Prinsenberg S. J., Peterson I. K., Observing regional-scale pack-ice decay processes with helicopter-borne sensors and moored upward-looking sonars, Annals of Glaciology, 2011, Vol. 52, No. 57, pp. 35–42.
  24. Wadhams P., Holt B., Waves in frazil and pancake ice and their detection in Seasat synthetic aperture radar imagery, J. Geophysical Research: Oceans, 1991, Vol. 96, No. C5, pp. 8835–8852.
  25. Wadhams P., Gill A. E., Linden P. F., Transects by submarine of the East Greenland Polar Front, Deep Sea Research, 1979, Vol. 26A, pp. 1311–1327.
  26. Wadhams P., Squire V. A., Goodman D. J., Cowan A. M., Moore S. C., The attenuation rates of ocean waves in the marginal ice zone, J. Geophysical Research: Oceans, 1988, Vol. 93, No. C6, pp. 6799–6818.
  27. Wang R., Shen H. H., Gravity waves propagating into an ice-covered ocean: A viscoelastic model, J. Geophysical Research: Oceans, 2010, Vol. 115, No. C6.
  28. Weber J. E., Wave attenuation and wave drift in the marginal ice zone, J. Physical Oceanography, 1987, Vol. 17, No. 12, pp. 2351–2361.
  29. Weitz M., Keller J. B., Reflection of water waves from floating ice in water of finite depth, Communications on Pure and Applied Mathematics, 1950, Vol. 3, pp. 305–318.
  30. Williams T. D., Bennets L. G., Squire V. A., Dumont D., Bertino L., Wave – ice interactions in the marginal ice zone. Part 1: Theoretical foundations, Ocean Modelling, 2013, Vol. 71, pp. 81–91.
  31. Yiew L. J., Bennetts L. G., Meylan M. H., French B. J., Thomas G. A. Hydrodynamic responses of a thin floating disk to regular waves, Ocean Modelling, 2016, Vol. 97, pp. 52–64.