ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 9-34

Satellite microwave remote sensing of the Arctic sea ice. Review

E.V. Zabolotskikh 1 , K.S. Khvorostovsky 1 , M.A. Zhivotovskaya 1 , E.V. Lvova 1 , S.M. Azarov 1 , E.A. Balashova 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 27.01.2023
DOI: 10.21046/2070-7401-2023-20-1-9-34
The paper presents an overview of the remote sensing methods for the Arctic sea ice cover characteristic retrieval from satellite microwave measurements. The basic physical principles of methods are described in relation to the estimation of various sea ice parameters. Both fundamental studies, aimed at the method development, and practical research studies, related to the method application, are analyzed. The review is structured in the form of sections, each of which is devoted to a particular type of instrument. Within the sections, the analysis is carried out specifically for each of the considered parameters. The issues related to the development of the methods for the retrieval of sea ice concentration (SIC), types, temperature and thickness from satellite microwave radiometer measurements are discussed. Classification of SIC retrieval methods and an analysis of error sources is presented, as well as the limitations for the estimation of the other sea ice cover parameters from passive microwave data. The methods for the retrieval of the Arctic sea ice edge and age composition from satellite scatterometer data are considered. New possibilities for the exploration of scatterometer measurements, associated with their high temporal resolution in the polar regions, are discussed. The approaches used in the classification of the sea surface based on synthetic aperture radar (SAR) data analysis and the main classification problems related to available Sentinel-1 SAR data are analyzed.
Keywords: Arctic, sea ice cover parameters, satellite remote sensing, microwave methods, microwave radiometers, scatterometers, SAR
Full text

References:

  1. Afanasyeva E. V., Alekseeva T. A., Sokolova Yu. V., Demchev D. M., Chufarova M. S., Bychenkov Yu. D., Devyataev O. S., AARI methodology for sea ice charts composition, Russian Arctic, 2019, No. 7, pp. 5–20 (in Russian), DOI: 10.24411/2658-4255-2019-10071.
  2. Bohren C. F., Huffman D. R., Absorption and Scattering of Light by SmallPparticles, New York: Wiley Interscience, 1983, 544 p.
  3. Zabolotskikh E. V., Review of methods to retrieve sea-ice parameters from satellite microwave radiometer data, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 110–128, DOI: 10.31857/S0002-3515551128-151.
  4. Zabolotskikh E. V., Balashova E. A., Sea ice dynamics in the Pechora Sea in winter 2019/2020, Fundamentalnaya i prikladnaya gidrofizika, 2021, Vol. 14, No. 1, pp. 97–105 (in Russian), DOI: 10.7868/S207366732101010X.
  5. Zabolotskikh E. V., Chapron B., Consideration of atmospheric effects for sea ice concentration retrieval from satellite microwave observations, Russian Meteorology and Hydrology, 2019, Vol. 44, No. 2, pp. 124–129.
  6. Zabolotskikh E. V., Balashova, E. A., Chapron B., Advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-233-243.
  7. Zabolotskikh E. V., Khvorostovsky K. S., Balashova E. A., Kostylev A. I., Kudryavtsev V. N. (2020a), Identification of large-scale sea ice ridge areas in the Arctic using ASCAT data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 165–177 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-165-177.
  8. Zabolotskikh E. V., Khvorostovsky K. S., Balashova E. A., Azarov S. M., Kudryavtsev V. N. (2020b), Variability of sea ice in the Arctic according to the Arctic Portal, Ice and Snow, 2020, Vol. 60, No. 2, pp. 239–250 (in Russian), DOI: 10.31857/S2076673420020037.
  9. Zabolotskikh E. V., Kudryavtsev V. N., Balashova E. A., Azarov S. M. (2022a), New approach to estimate sea ice edge from ASCAT data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 193–209 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-193-209.
  10. Zabolotskikh E. V., Balashova E. A., Azarov S. M. (2022b), Sea ice concentration retrieval from MTVZA GYa measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 27–38 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-27-38.
  11. Zakhvatkina N. Yu., Bychkova I. A., Smirnov V. G., Digital processing of Sentinel-1 data for automated detection of old ice edge, Sovremennye problem distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 23–34 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-23-34.
  12. Kostylev A. I., Zabolotskikh E. V., Khvorostovsky K. S., Research of the seasonal variability of backscatter of different types of ice on ASCAT scatterometer data, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2019, No. 57, pp. 60–76 (in Russian), DOI: 10.33933/2074-2762-2019-57-60-76.
  13. Murtazin A. F., Evgrafova K. G., Kudryavtsev V. N., Arctic Sea ice properties using ASCAT, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2015, No. 40, pp. 160–173 (in Russian).
  14. Okeanografiya i morskoi led (Oceanography and sea ice), Frolov I. E., Ashik I. M., Timokhov L. A., Yulin A. V. (eds.), Moscow: Paulsen, 2011, 432 p. (in Russian).
  15. Smirnov V. G., Bushuev A. V., Zakhvatkina N. Yu., Loschilov V. S., Satellite monitoring of sea ice, Problemy Arktiki i Antarktiki, 2010, Vol. 85, No. 2, pp. 62–76 (in Russian).
  16. Smirnov V. G., Bushuev A. V., Bychkova I. A., Grigor’ev A. V., Zakhvatkina N. Yu., Loshchilov V. S., Masanov A. D., Smirnov V. N., Frolov S. V., Yulin A. V., Aleksandrov V. Yu., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), Saint Petersburg: AANII, 2011, 240 p. (in Russian).
  17. Tikhonov V. V., Repina I. A., Alexeeva T. A., Ivanov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Komarova N. Yu., Arctic sea ice cover reconstruction on the basis of SSM/I data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 5, pp. 182–193 (in Russian).
  18. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Polar sea ice monitoring using satellite microwave radiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169 (in Russian), DOI: 10.7868/S0205961416040072.
  19. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Satellite microwave radiometry of the polar region sea ice. Review, Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 65–84 (in Russian).
  20. Shalina E. V., Bobylev L. P., Sea ice transformations in the Arctic from satellite observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 28–41 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-28-41.
  21. Aaboe S., Breivik L.-A., Sørensen A., Eastwood S., Lavergne T., Global Sea Ice Edge and Type. Product User’s Manual, OSI-403-C EUMETSAT, 2016, 61 p.
  22. Aaboe S., Down E. J., Eastwood S., Product User Manual for the Global sea-ice edge and type Product, Oslo, Norway, Norwegian Meteorological Inst., 2021, 36 p.
  23. Balashova E. A., Zabolotskikh E. V., Azarov S. M., Khvorostovsky K. S., Chapron B., Arctic Ocean Surface Type Classification Using SAR Images and Machine Learning Algorithms, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS-2019), 2019, pp. 10003–10006, DOI: 10.1109/IGARSS.2019.8897961.
  24. Bogdanov A. V., Neuroinspired architecture for robust classifier fusion of multisensor imagery, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 5, pp. 1467–1487.
  25. Boulze H., Korosov A., Brajard J., Classification of sea ice types in Sentinel-1 SAR data using convolutional neural networks, Remote Sensing, 2020, Vol. 12, No. 13, Art. No. 2165, DOI: 10.3390/rs12132165.
  26. Breivik L., Eastwood S., Lavergne T., Use of C-Band Scatterometer for Sea Ice Edge Identification, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2669–2677, DOI: 10.1109/TGRS.2012.2188898.
  27. Cavalieri D. J., Gloersen P., Campbell W. J., Determination of sea ice parameters with the Nimbus-7 SMMR, J. Geophysical Research: Atmospheres 1984–2012, 1984, Vol. 89, No. D4, pp. 5355–5369, DOI: 10.1029/JD089iD04p05355.
  28. Chan M. A., Comiso J. C., Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat, J. Climate, 2012, Vol. 26, No. 10, pp. 3285–3306, DOI: 10.1175/JCLI-D-12-00204.1.
  29. Chi J., Kim H.-C., Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks, GIScience Remote Sensing, 2021, Vol. 58, No. 6, pp. 812–830, DOI: 10.1080/15481603.2021.1943213.
  30. Collins M. J., Livingstone C. E., Raney R. K., Discrimination of sea ice in the Labrador marginal ice zone from synthetic aperture radar image texture, Intern. J. Remote Sensing, 1997, Vol. 18, No. 3, pp. 535–571.
  31. Comiso J. C., Characteristics of Arctic winter sea ice from satellite multispectral microwave observations, J. Geophysical Research: Oceans, 1986, Vol. 91, No. C1, pp. 975–994, DOI: 10.1029/JC091iC01p00975.
  32. Comiso J. C., Large Decadal Decline of the Arctic Multiyear Ice Cover, J. Climate, 2012, Vol. 25, No. 4, pp. 1176–1193, DOI: 10.1175/JCLI-D-11-00113.1.
  33. Comiso J. C., Sea Ice Concentration and Extent, In: Encyclopedia of Remote Sensing, Njoku E. G. (ed.), New York: Springer, 2014, pp. 727–743, DOI: 10.1007/978-0-387-36699-9_162.
  34. Comiso J. C., Steffen K., Studies of Antarctic sea ice concentrations from satellite data and their applications, J. Geophysical Research: Oceans, 2001, Vol. 106, No. C12, pp. 31361–31385, https://doi.org/10.1029/2001JC000823.
  35. Comiso J. C., Cavalieri D. J., Markus T., Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Trans. Geoscience and Remote Sensinng, 2003, Vol. 41, No. 2, pp. 243–252, DOI: 10.1109/TGRS.2002.808317.
  36. Comiso J. C., Parkinson C. L., Gersten R., Stock L., Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, 2008, Vol. 35, Art. No. L01703, DOI: 10.1029/2007GL031972.
  37. Comiso J. C., Meier W. N., Gersten R., Variability and trends in the Arctic Sea ice cover: Results from different techniques, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 8, pp. 6883–6900, DOI: 10.1002/2017JC012768.
  38. Dabboor M., Shokr M., A New Bayesian Likelihood Ratio Test for Supervised Classification of Fully Polarimetric SAR Data: An Application for Sea Ice Type Mapping, AGU Fall Meeting Abstracts, 2012, Abstr. ID C21C-0606.
  39. Dierking W. (2013a), Sea Ice Monitoring by Synthetic Aperture Radar, Oceanography, 2013, Vol. 26, No. 2, DOI: 10.5670/oceanog.2013.33.
  40. Dierking W. (2013b), Sea ice classification on different spatial scales for operational and scientific use, ESA Living Planet Symp. (ESA SP-722), 9–13 Sept. 2013, Edinburgh, UK, 2013, DOI: 10013/epic.44280.
  41. Drüe C., Heinemann G., High-resolution maps of the sea-ice concentration from MODIS satellite data, Geophysical Research Letters, 2004, Vol. 31, No. 20, DOI: 10.1029/2004GL020808.
  42. Emery W. J., Radebaugh M., Fowler C. W., Cavalieri D., Steffen K., A comparison of sea ice parameters computed from advanced very high resolution radiometer and Landsat satellite imagery and from airborne passive microwave radiometry, J. Geophysical Research: Oceans, 1991, Vol. 96, No. C12, pp. 22075–22085, https://doi.org/10.1029/91JC02337.
  43. Geldsetzer T., Yackel J. J., Sea ice type and open water discrimination using dual co-polarized C-band SAR, Canadian J. Remote Sensing, 2009, Vol. 35, No. 1, pp. 73–84, https://doi.org/10.5589/m08-075.
  44. Girard-Ardhuin F., Ezraty R., Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2639–2648, DOI: 10.1109/TGRS.2012.2184124.
  45. Gohin F., Cavanie A., A first try at identification of sea ice using the three beam scatterometer of ERS-1, Intern. J. Remote Sensing, 1994, Vol. 15, No. 6, pp. 1221–1228, DOI: 10.1080/01431169408954156.
  46. Gray A., Hawkins R., Livingstone C., Arsenault L., Johnstone W., Simultaneous scatterometer and radiometer measurements of sea-ice microwave signatures, IEEE J. Oceanic Engineering, 1982, Vol. 7, No. 1, pp. 20–32, DOI: 10.1109/JOE.1982.1145506.
  47. Grenfell T. C., Hawkins R., Livingstone C., Arsenault L., Johnstone W., Evolution of electromagnetic signatures of sea ice from initial formation to the establishment of thick first-year ice, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 5, pp. 1642–1654, DOI: 10.1109/36.718636.
  48. Han H., Im J., Kim M., Sim S., Kim J., Kim D., Kang S.-H., Retrieval of melt ponds on arctic multiyear sea ice in summer from TerraSAR-X dual-polarization data using machine learning approaches: A case study in the Chukchi Sea with mid-incidence angle data, Remote Sensing, 2016, Vol. 8, No. 1, Art. No. 57, DOI: 10.3390/rs8010057.
  49. Hill J. C., Long D. G., Extension of the QuikSCAT sea ice extent data set with OSCAT data, IEEE Geosci. Remote Sensing Letters, 2016, Vol. 14, No. 1, pp. 92–96, DOI: 10.1109/LGRS.2016.2630010.
  50. Hong D.-B., Yang C.-S., Automatic discrimination approach of sea ice in the Arctic Ocean using Sentinel-1 Extra Wide Swath dual-polarized SAR data, Intern J. Remote Sensing, 2018, Vol. 39, No. 13, pp. 4469–4483, https://doi.org/10.1080/01431161.2017.1415486.
  51. Hwang B. J., Ehn J. K., Barber D. G., Galley R., Grenfell T. C., Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission, J. Geophysical Research: Oceans, 2007, Vol. 112, No. C5, DOI: 10.1029/2006JC003703.
  52. Ivanova N., Johannessen O. M., Pedersen L. T., Tonboe R. T., Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246, DOI: 10.1109/TGRS.2014.2310136.
  53. Ivanova N., Pedersen L. T., Tonboe R. T., Kern S., Heygster G., Lavergne T., Sørensen A., Saldo R., Dybkjær G., Brucker L., Shokr M., Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges, Cryosphere, 2015, Vol. 9, pp. 1797–1817, DOI: 10.5194/tcd-9-1269-2015.
  54. Johannessen O. M., Alexandrov V., Frolov I. Y., Sandven S., Pettersson L. H., Bobylev L. P., Kloster K., Smirnov V. G., Mironov Y. U., Babich N. G., Remote sensing of sea ice in the Northern Sea Route: studies and applications, Springer-Praxis, 2006, 472 p.
  55. Kaleschke L., Lüpkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G., SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Canadian J. Remote Sensing, 2001, Vol. 27, No. 5, pp. 526–537, https://doi.org/10.1080/07038992.2001.10854892.
  56. Kaleschke L., Maaß N., Haas C., Hendricks S., Heygster G., Tonboe R. T., A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere, 2010, Vol. 4, No. 4, pp. 583–592, https://doi.org/10.5194/tc-4-583-2010.
  57. Kaleschke L., Tian-Kunze X., Maaß N., Mäkynen M., Drusch M., Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophysical Research Letters, 2012, Vol. 39, No. 5, Art. No. L05501, DOI: 10.1029/2012GL050916.
  58. Karvonen J. (2014a), Baltic sea ice concentration estimation based on C-band dual-polarized SAR data, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 9, pp. 5558–5566, DOI: 10.1109/TGRS.2013.2290331.
  59. Karvonen J. (2014b), A sea ice concentration estimation algorithm utilizing radiometer and SAR data, The Cryosphere, 2014, Vol. 8, No. 5, pp. 1639–1650, https://doi.org/10.5194/tc-8-1639-2014.
  60. Karvonen J., Simila M., Makynen M., Open water detection from Baltic Sea ice RadarSat-1 SAR imagery, IEEE Geoscience and Remote Sensing Letters, 2005, Vol. 2, No. 3, pp. 275–279, DOI: 10.1109/LGRS.2005.847930.
  61. Kern S., Heygster G., Sea-ice concentration retrieval in the Antarctic based on the SSM/I 85.5 GHz polarization, Annals of Glaciology, 2001, Vol. 33, No. 1, pp. 109–114, https://doi.org/10.3189/172756401781818905.
  62. Key J., Haefliger M., Arctic ice surface temperature retrieval from AVHRR thermal channels, J. Geophysical Research: Atmospheres, 1992, Vol. 97, No. D5, pp. 5885–5893, https://doi.org/10.1029/92JD00348.
  63. Khvorostovsky K., Rampal P., On retrieving sea ice freeboard from ICESat laser altimeter, The Cryosphere, 2016, Vol. 10, No. 5, pp. 2329–2346, https://doi.org/10.5194/tc-10-2329-2016.
  64. Komarov A. S., Buehner M., Ice concentration from dual-polarization SAR images using ice and water retrievals at multiple spatial scales, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 59, No. 2, pp. 950–961, DOI: 10.1109/TGRS.2020.3000672.
  65. Kwok R., Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003, J. Geophysical Research: Oceans, 2004, Vol. 109, No. C11, Art. No. C11004, DOI: 10.1029/2003JC002238.
  66. Kwok R., Cunningham G. F., ICESat over Arctic sea ice: Estimation of snow depth and ice thickness, J. Geophysical Research: Oceans, 2008, Vol. 113, No. C8, Art. No. C08010, DOI: 10.1029/2008JC004753.
  67. Kwok R., Rignot E., Holt B., Onstott R., Identification of sea ice types in spaceborne synthetic aperture radar data, J. Geophysical Research: Oceans, 1992, Vol. 97, No. C2, pp. 2391–2402, DOI: 10.1029/91JC02652.
  68. Laxon S., Peacock N., Smith D., High interannual variability of sea ice thickness in the Arctic region, Nature, 2003, Vol. 425, No. 6961, pp. 947–950, DOI: 10.1038/nature02050.
  69. Laxon S. W., Giles K. A., Ridout A. L., Wingham D. J., Willatt R., Cullen R., Kwok R., Schweiger A., Zhang J., Haas C., CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophysical Research Letters, 2013, Vol. 40, No. 4, pp. 732–737, https://doi.org/10.1002/grl.50193.
  70. Leigh S., Wang Z., Clausi D. A., Automated Ice – Water Classification Using Dual Polarization SAR Satellite Imagery, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 9, pp. 5529–5539, DOI: 10.1109/TGRS.2013.2290231.
  71. Li M., Zhao C., Zhao Y., Wang Z., Shi L., Polar sea ice monitoring using HY-2A scatterometer measurements, Remote Sensing, 2016, Vol. 8, No. 8, Art. No. 688, DOI: 10.3390/rs8080688.
  72. Lindell D. B., Long D. G., Multiyear Arctic sea ice classification using OSCAT and QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 54, No. 1, pp. 167–175, DOI: 10.1109/TGRS.2015.2452215.
  73. Lindell D. B., Long D. G., Multiyear Arctic ice classification using ASCAT and SSMIS, Remote Sensing, 2016, Vol. 8, No. 4, Art. No. 294, DOI: 10.3390/rs8040294.
  74. Liu H., Guo H., Zhang L., SVM-based sea ice classification using textural features and concentration from RadarSat-2 dual-pol ScanSAR data, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2014, Vol. 8, No. 4, pp. 1601–1613, DOI: 10.1109/JSTARS.2014.2365215.
  75. Long D. G., Polar applications of spaceborne scatterometers, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 10, No. 5, pp. 2307–2320, DOI: 10.1109/JSTARS.2016.2629418.
  76. Lundhaug M., ERS SAR studies of sea ice signatures in the Pechora Sea and Kara Sea region, Canadian J. Remote Sensing, 2002, Vol. 28, No. 2, pp. 114–127, DOI: 10.5589/m02-022.
  77. Mäkynen M., Cheng B., Similä M., On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice, Annals of Glaciology, 2013, Vol. 54, No. 62, pp. 87–96, https://doi.org/10.3189/2013AoG62A166.
  78. Malmgren-Hansen D., Pedersen L. T., Nielsen A. A., Kreiner M. B., Saldo R., Skriver H., Lavelle J., Buus-Hinkler J., Krane K. H., A convolutional neural network architecture for Sentinel-1 and AMSR2 data fusion, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 59, No. 3, pp. 1890–1902, DOI: 10.1109/TGRS.2020.3004539.
  79. Markus T., Cavalieri D. J., An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 3, pp. 1387–1398, DOI: 10.1109/36.843033.
  80. Martin S., Drucker R., Kwok R., Holt B., Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E, Geophysical Research Letters, 2005, Vol. 32, No. 5, Art. No. L05505, DOI: 10.1029/2004GL022013.
  81. Meier W. N., Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 6, pp. 1324–1337, DOI: 10.1109/TGRS.2005.846151.
  82. Meier W. N., Stroeve J., Comparison of sea-ice extent and ice-edge location estimates from passive microwave and enhanced-resolution scatterometer data, Annals of Glaciology, 2008, Vol. 48, pp. 65–70, DOI: 10.3189/172756408784700743.
  83. Meier W. N., Fetterer F., Stewart J. S., Helfrich S., How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting, Annals of Glaciology, 2015, Vol. 56, No. 69, pp. 332–340, https://doi.org/10.3189/2015AoG69A694.
  84. Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), Book ser.: Geophysical Monograph 68, Washington, D. C.: American Geophysical Union, 1992, 462 p.
  85. Moen M.-A., Doulgeris A. P., Anfinsen S. N., Renner A. H., Hughes N., Gerland S., Eltoft T., Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts, The Cryosphere, 2013, Vol. 7, No. 6, pp. 1693–1705, https://doi.org/10.5194/tc-7-1693-2013.
  86. Nakamura K., Wakabayashi H., Naoki K., Nishio F., Moriyama T., Uratsuka S., Observation of sea-ice thickness in the Sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (Pi-SAR) data, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 11, pp. 2460–2469, DOI: 10.1109/TGRS.2005.853928.
  87. Nakamura K., Wakabayashi H., Naoki K., Nishio F., Sea-ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data, Annals of Glaciology, 2006, Vol. 44, pp. 261–268, https://doi.org/10.3189/172756406781811420.
  88. Naoki K., Ukita J., Nishio F., Nakayama M., Comiso J. C., Gasiewski A., Thin sea ice thickness as inferred from passive microwave and in situ observations, J. Geophysical Research: Oceans, 2008, Vol. 113, No. C2, Art. No. C02S16, DOI: 10.1029/2007JC004270.
  89. Nihashi S., Ohshima K. I., Tamura T., Fukamachi Y., Saitoh S., Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E, J. Geophysical Research: Oceans, 2009, Vol. 114, No. C10, Art. No. C10025, DOI: 10.1029/2008JC005222.
  90. Ochilov S., Clausi D. A., Operational SAR sea-ice image classification, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 11, pp. 4397–4408, DOI: 10.1109/TGRS.2012.2192278.
  91. Park J.-W., Korosov A. A., Babiker M., Sandven S., Won J.-S., Efficient thermal noise removal for Sentinel-1 TOPSAR cross-polarization channel, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 56, No. 3, pp. 1555–1565, DOI: 10.1109/TGRS.2017.2765248.
  92. Park J.-W., Won J.-S., Korosov A. A., Babiker M., Miranda N., Textural noise correction for Sentinel-1 TOPSAR cross-polarization channel images, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 57, No. 6, pp. 4040–4049, DOI: 10.1109/TGRS.2018.2889381.
  93. Park J.-W., Korosov A. A., Babiker M., Won J.-S., Hansen M. W., Kim H.-C., Classification of sea ice types in Sentinel-1 synthetic aperture radar images, The Cryosphere, 2020, Vol. 14, No. 8, pp. 2629–2645, https://doi.org/10.5194/tc-14-2629-2020.
  94. Partington K. C., Flach J. D., Barber D., Isleifson D., Meadows P. J., Verlaan P., Dual-Polarization C-Band Radar Observations of Sea Ice in the Amundsen Gulf, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 6, pp. 2685–2691, DOI: 10.1109/TGRS.2009.2039577.
  95. Pedersen L. T., Improved spatial resolution of SSM/I products, In: Development of new satellite ice data products, Sandven S. (ed.), Final Rep. No. 145, Bergen, Norway: Nansen Environmental and Remote Sensing Center, 1998.
  96. Ramsay B., Manore M., Weir L., Wilson K., Bradley D., Use of RadarSat data in the Canadian Ice Service, Canadian J. Remote Sensing, 1998, Vol. 24, No. 1, pp. 36–42.
  97. Ramseier R. O., Sea ice validation, In: DMSP Special Sensor Microwave/Imager Calibration/Validation, Hollinger J. P. (ed.), Naval Research Laboratory, Washington, D. C., 1991.
  98. Remund Q. P., Long D. G., Sea ice extent mapping using Ku-band scatterometer data, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C5, pp. 11515–11527, DOI: 10.1029/98JC02373.
  99. Remund Q. P., Long D. G., A decade of QuikSCAT scatterometer sea ice extent data, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 52, No. 7, pp. 4281–4290, DOI: 10.1109/TGRS.2013.2281056.
  100. Ressel R., Frost A., Lehner S., A Neural Network-Based Classification for Sea Ice Types on X-Band SAR Images, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, No. 7, pp. 3672–3680, DOI: 10.1109/JSTARS.2015.2436993.
  101. Ressel R., Singha S., Lehner S., Rösel A., Spreen G., Investigation into different polarimetric features for sea ice classification using X-band synthetic aperture radar, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 7, pp. 3131–3143, DOI: 10.1109/JSTARS.2016.2539501.
  102. Ricker R., Hendricks S., Kaleschke L., Tian-Kunze X., King J., Haas C., A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 2017, Vol. 11, No. 4, pp. 1607–1623, https://doi.org/10.5194/tc-11-1607-2017.
  103. Rinne E., Similä M., Utilisation of CryoSat-2 SAR altimeter in operational ice charting, The Cryosphere, 2016, Vol. 10, No. 1, pp. 121–131, https://doi.org/10.5194/tc-10-121-2016.
  104. Rivas M. B., Stoffelen A., New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 6, pp. 1894–1901, DOI: 10.1109/TGRS.2011.2182356.
  105. Rivas M. B., Verspeek J., Verhoef A., Stoffelen A., Bayesian Sea Ice Detection with the Advanced Scatterometer ASCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2649–2657, DOI: 10.1109/TGRS.2011.2182356.
  106. Rivas M. B., Otosaka I., Stoffelen A., Verhoef A., A scatterometer record of sea ice extents and backscatter: 1992–2016, The Cryosphere, 2018, Vol. 12, No. 9, pp. 2941–2953, https://doi.org/10.5194/tc-12-2941-2018.
  107. Rudjord Ø., Solberg R., Spreen G., Gerland S., Estimating thin ice thickness around Svalbard using MODIS satellite imagery, Geografiska Annaler: Series A, Physical Geography, 2022, Vol. 104, No. 2, pp 127–149, DOI: 10.1080/04353676.2022.2070158.
  108. Scheuchl B., Caves R., Cumming I., Staples G., Automated sea ice classification using spaceborne polarimetric SAR data, Scanning the Present and Resolving the Future: Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS-2001), 2001, Vol. 7, Cat. No. 01CH37217, DOI: 10.1109/IGARSS.2001.978275.
  109. Scheuchl B., Caves R., Flett D., DeAbreu R., Arkett M., Cumming I. (2004a), EnviSat ASAR AP data for operational sea ice monitoring, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS-2004), 2004, pp. 2142–2145, DOI: 10.1109/IGARSS.2004.1370782.
  110. Scheuchl B., Flett D., Caves R., Cumming I. (2004b), Potential of RadarSat-2 data for operational sea ice monitoring, Canadian J. Remote Sensing, 2004, Vol. 30, No. 3, pp. 448–461, https://doi.org/10.5589/m04-011.
  111. Shokr M., Lambe A., Agnew T., A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: An application to 85-GHz passive microwave data, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 12, pp. 4104–4121, DOI: 10.1109/TGRS.2008.2000624.
  112. Singh R. K., Oza S. R., Vyas N. K., Sarkar A., Estimation of thin ice thickness from the advanced microwave scanning radiometer-EOS for coastal polynyas in the Chukchi and Beaufort Seas, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 8, pp. 2993–2998, DOI: 10.1109/TGRS.2011.2123101.
  113. Smith D. M., Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data, Remote Sensing, 1996, Vol. 17, No. 13, pp. 2625–2646, https://doi.org/10.1080/01431169608949096.
  114. Soh L.-K., Tsatsoulis C., Gineris D., Bertoia C., ARKTOS: An intelligent system for SAR sea ice image classification, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 1, pp. 229–248, DOI: 10.1109/TGRS.2003.817819.
  115. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research: Oceans 1978–2012, 2008, Vol. 113, No. C2, Art. No. C02S03, DOI: 10.1029/2005JC003384.
  116. Steffen K., Schweiger A. J., A multisensor approach to sea ice classification for the validation of DMSP SSM/I passive microwave derived sea ice products, Photogrammetric Engineering and Remote Sensing, 1990, Vol. 56, pp. 75–82.
  117. Svendsen E., Kloster K., Farrelly B., Johannessen O. M., Johannessen J. A., Campbell W. J., Gloersen P., Cavalieri D., Mätzler C., Norwegian remote sensing experiment: Evaluation of the Nimbus-7 scanning multichannel microwave radiometer for sea ice research, J. Geophysical Research: Oceans, 1983, Vol. 88, No. C5, pp. 2781–2791, https://doi.org/10.1029/JC088iC05p02781.
  118. Svendsen E., Matzler C., Grenfell T. C., A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Intern. J. Remote Sensing, 1987, Vol. 8, No. 10, pp. 1479–1487, https://doi.org/10.1080/01431168708954790.
  119. Swan A. M., Long D. G., Multiyear Arctic sea ice classification using QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 9, pp. 3317–3326, DOI: 10.1109/TGRS.2012.2184123.
  120. Swift C. T., Fedor L. S., Ramseier R. O., An algorithm to measure sea ice concentration with microwave radiometers, J. Geophysical Research: Oceans, 1985, Vol. 90, No. C1, pp. 1087–1099, DOI: 10.1029/JC090iC01p01087.
  121. Tamura T., Ohshima K. I., Markus T., Cavalieri D. J., Nihashi S., Hirasawa N., Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean, J. Atmospheric and Ocean Technology, 2007, Vol. 24, No. 10, pp. 1757–1772, https://doi.org/10.1175/JTECH2113.1.
  122. Tian-Kunze X., Kaleschke L., Maaß N., Mäkynen M., Serra N., Drusch M., Krumpen T., SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 2014, Vol. 8, pp. 997–1018, https://doi.org/10.5194/tc-8-997-2014.
  123. Tonboe R., Lavelle J., The Eumetsat OSI SAF Sea Ice Concentration Algorithm: Algorithm Theoretical Basis Document, Product OSI-401-b, Version 1.5, Ocean and Sea Ice SAF, 2016, 17 p.
  124. Ulaby F. T., Moore R. K., Fung A. K., Microwave remote sensing: Active and passive. V. 1. Microwave remote sensing fundamentals and radiometry, Reading, MA: Addison-Wesley Publ. Co., 1981, 470 p.
  125. Ye Y., Shokr M., Heygster G., Spreen G., Improving multiyear sea ice concentration estimates with sea ice drift, Remote Sensing, 2016, Vol. 8, No. 5, Art. No. 397, DOI: 10.3390/rs8050397.
  126. Yu P., Qin A. K., Clausi D. A., Feature extraction of dual-pol SAR imagery for sea ice image segmentation, Canadian J. Remote Sensing, 2012, Vol. 38, No. 3, pp. 352–366, https://doi.org/10.5589/m12-028.
  127. Yueh S. H., Kwok R., Lou S.-H., Tsai W.-Y., Sea ice identification using dual-polarized Ku-band scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 1997, Vol. 35, No. 3, pp. 560–569, DOI: 10.1109/36.581968.
  128. Zabolotskikh E. V., Balashova E. A., Kudryavtsev V. N., Chapron B., Synergistic Use of Satellite Scatterometer, SAR and Altimeter Data to Study First Year Sea Ice Properties, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS-2021), 2021, pp. 5633–5636, DOI: 10.1109/IGARSS47720.2021.9553828.
  129. Zakhvatkina N. Y., Alexandrov V. Y., Johannessen O. M., Sandven S., Frolov I. Y., Classification of sea ice types in EnviSat synthetic aperture radar images, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 51, No. 5, pp. 2587–2600, DOI: 10.1109/TGRS.2012.2212445.
  130. Zakhvatkina N., Korosov A., Muckenhuber S., Sandven S., Babiker M., Operational algorithm for ice – water classification on dual-polarized RADARSAT-2 images, The Cryosphere, 2017, Vol. 11, No. 1, pp. 33–46, DOI: 10.5194/tc-11-33-2017.
  131. Zakhvatkina N., Smirnov V., Bychkova I., Satellite SAR Data-based Sea Ice Classification: An Overview, Geosciences, 2019, Vol. 9, No. 4, Art. No. 152, DOI: 10.3390/geosciences9040152.
  132. Zhai X., Wang Z., Zheng Z., Xu R., Dou F., Xu N., Zhang X., Sea Ice Monitoring with CFOSAT Scatterometer Measurements Using Random Forest Classifier, Remote Sensing, 2021, Vol. 13, No. 22, Art. No. 4686, DOI: 10.3390/rs13224686.
  133. Zhang Z., Yu Y., Shokr M., Li X., Ye Y., Cheng X., Chen Z., Hui F., Intercomparison of Arctic Sea Ice Backscatter and Ice Type Classification Using Ku-Band and C-Band Scatterometers, IEEE Trans. Geoscience and Remote Sensing, 2021, Vol. 60, DOI: 10.1109/TGRS.2021.3099835.
  134. Zibordi G., Van Woert M., Meloni G. P., Canossi I., Intercomparisons of sea ice concentration from SSM/I and AVHRR data of the Ross Sea, Remote Sensing of Environment, 1995, Vol. 53, No. 3, pp. 145–152, DOI: 10.1016/0034-4257(94)00100-2.