ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 113-130

Assessment of the impact of earthquakes on surface displacements of Sakhalin Island in 1990–2020 and the need to consider it in GNSS positioning

N.V. Shestakov 1, 2 , G.V. Nechaev 1, 2 , A.K. Kishkina 1, 3 , N.N. Titkov 4 , A.S. Prytkov 5 , A.Yu. Polets 5 , M.D. Gerasimenko 2 , E.A. Lialiushko 1 , A.S. Ten 6 , M. Guojie 7 
1 Far Eastern Federal University, Vladivostok, Russia
2 Institute of Applied Mathematics FEB RAS, Vladivostok, Russia
3 Pacific Geographical Institute FEB RAS, Vladivostok, Russia
4 Kamchatka Branch of the Geophysical Survey RAS, Petropavlovsk-Kamchatsky, Russia
5 Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia
6 Computing Center FEB RAS, Khabarovsk, Russia
7 Institute of Earthquake Forecasting CEA, Beijing, China
Accepted: 05.12.2022
DOI: 10.21046/2070-7401-2023-20-1-113-130
In this paper, we study the problem of the impact of strong crustal and deep-focus earthquakes on the displacements of the earth’s surface on the Sakhalin Island and the need to consider it in high-precision GNSS positioning. Sakhalin Island is a seismically active region and, at the same time, it is quite remote from the subduction zone, which, as a rule, is associated with the strongest seismic events. In the absence of dense networks of continuously operating GNSS stations within the study region, to obtain initial estimates of the horizontal and vertical coseismic displacements of the island for the period 1990–2020, we have performed numerical modeling of the fields of these displacements using the source parameters of nine earthquakes with moment magnitudes 5.8 ≤ Mw ≤ 8.3 and hypocenter depths from ~10 to 600 km that occurred both within the island and at a considerable distance from it (several hundred kilometers). An analysis of the obtained results showed that not only small- and medium-focus earthquakes occurring within the island and its immediate vicinity, but also crustal earthquakes with Mw ≥ 8 occurring at a considerable distance in the subduction zone, as well as powerful deep-focus seismic events can lead to significant (millimeters-centimeters) coseismic displacements of the earth’s crust of Sakhalin Island. Such displacements, especially those accumulated over a long period of time, significantly affect the accuracy of determining the spatial position and speed of points of the state geodetic network of a higher order (FAGN and PGN sites) and should be taken into account in high-precision GNSS determinations, and can also be used to refine the stress-strain state of the geoenvironment and ensuring safe operation of extended linear facilities located in the study region.
Keywords: GNSS-positioning, coordinate system, state geodetic network, earthquake, coseismic displacements, numerical modeling
Full text

References:

  1. Antonovich K. M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii. V 2 t. (Satellite radio navigation systems application in geodesy: In 2 vol.), Moscow: FGUP “Kartgeotsentr”, 2005, Vol. 1, 334 p. (in Russian).
  2. Basmanov A. V., Results geodetic monitoring geodynamic polygons for measurements Rosreestr 2015, Proc. InterExpo GEO-Siberia-2016, XII Intern. Scientific Congress and Exhibition, Plenary Session, Novosibirsk, 18–22 Apr., 2016, Novosibirsk: SSUGT, 2016, pp. 9–15 (in Russian).
  3. Bykov V. G., Shestakov N. V., Gerasimenko M. D., Sorokin A. A., Konovalov A. V., Prytkov A. S., Vasilenko N. F., Safonov D. A., Kolomiets A. G., Serov M. A., Pupatenko V. V., Korolev S. P., Verkhoturov A. L., Zhizherin V. S., Ryabinkin K. S., Unified Geodynamic Observation Network of the FEB RAS: formation, ten years of development, main achievements, Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2020, No. 3, pp. 5–24 (in Russian), DOI: 10.37102/08697698.2020.211.3.001.
  4. Gabsatarov Yu. V., Kinematika mikroplit v severo-vostochnoi Azii: Diss. kand. fiz.-mat. nauk (Kinematics of microplates in northeast Asia (Moscow), Cand. phys.-math. sci. thesis), Moscow: 2015, 193 p. (in Russian).
  5. GOST 32453-2017. Global’naya navigatsionnaya sputnikovaya sistema. Sistemy koordinat. Metody preobrazovanii koordinat opredelyaemykh tochek (GOST 32453-2017. Global navigation satellite system. Coordinate systems. Methods for transforming the coordinates of the determined points), Standartinform, 2017, 23 p. (in Russian).
  6. Konovalov A. V., Nagornykh T. V., Safonov D. A., Sovremennye issledovaniya mekhanizmov ochagov zemletryasenii o. Sakhalin (Modern studies of the mechanisms of earthquake sources on Sakhalin Island), Vladivostok: Nauka, 2014, 252 p. (in Russian), https://doi.org/10.30730/gtrz.2020.4.4.474-485.
  7. Levin B. V., Tikhonov I. N., Kaistrechenko V. M., Kim Ch. U., Urban N. A., Andreeva M. Yu., Borisov S. A., Vasilenko N. F., Zherdeva O. A., Zlobin T. K., Zolotukhin D. E., Ivashova E. P., Ivel’skaya T. N., Kartashova O. L., Kovalev P. D., Kovalev D. P., Kovalenko N. S., Kozhurin A. I., Korolev P. Yu., Koff G. L., Levin Yu. N., Lomtev V. L., Mel’nikov O. A., Mikhailov V. I., Nagornykh T. V., Nikiforov S. P., Poplavskaya L. N., Prytkov A. S., Rudik M. I., Sasorova E. V., Sfonov D. A., Semenova E. P., Sen R. S., Solov’ev V. N., Spirin A. I., Strom A. L., Troitskaya Yu. I., Fokina T. A., Khramushin V. N., Chernov A. G., Shevchenko G. V., Shestakova O. M., Nevel’skoe zemletryasenie i tsunami 2 avgusta 2007 goda, o. Sakhalin (Nevelsk earthquake and tsunami August 2, 2007, Sakhalin Island), Moscow: Yanus-K, 2009, 204 p. (in Russian).
  8. Basic provisions on the state geodetic network of the Russian Federation, GCINR 01-006-03, Moscow, 2004, 29 p. (in Russian).
  9. Parameters of the Earth in 1990 (PE-90.11), Reference document, Military Topographic Directorate of the General Staff of the Armed Forces of the Russian Federation, Moscow: 2014. 52 p. (in Russian).
  10. Prytkov A. S., Vasilenko N. F., Dislocation model of the source of the 2000 Uglegorsk earthquake (Sakhalin Island), Tikhookeanskaya geologiya, 2006, Vol. 25, No. 6, pp. 115–122 (in Russian).
  11. Prytkov A. S., Vasilenko N. F., Deformations of the earth’s surface of Sakhalin Island according to GPS observations, Geodinamika i tektonofizika, 2018, Vol. 9, No. 2, pp. 503–514 (in Russian), https://doi.org/10.5800/GT-2018-9-2-0358.
  12. Chebrov V. N., Kugaenko Yu. A., Vikulina S. A., Kravchenko N. M., Matveenko E. A., Mityushkina S. V., Raevskaya A. A., Saltykov V. A., Chebrov D. V., Lander A. V., The deep Sea of Okhotsk earthquake on May 24, 2013 with magnitude MW = 8.3 is the strongest seismic event off the coast of Kamchatka during the period of detailed seismological observations, Vestnik Kamchatskoi regional’noi assotsiatsii “Uchebno-nauchnyi tsentr”, Ser.: Nauki o Zemle, 2013, No. 1, Issue 21, pp. 17–24 (in Russian).
  13. Chebrov V. N., Kugaenko Yu. A., Abubakirov I. R., Droznina S. Ya., Ivanova E. I., Matveenko E. A., Mityushkina S. V., Ototyuk D. A., Pavlov V. M., Raevskaya A. A., Saltykov V. A., Senyukov S. L., Serafimova Yu. K., Skorkina A. A., Titkov N. N., Chebrov D. V., Zhupanovsk eathquake 30.01.2016 with KS = 15.7, MW = 7.2, I = 6 (Kamchatka), Vestnik Kamchatskoi regional’noi assotsiatsii “Uchebno-nauchnyi tsentr”, Ser.: Nauki o Zemle, 2016, No. 1, Issue 29, pp. 5–16 (in Russian).
  14. Shestakov N. V., Gerasimenko M. D., Okhzono M., Movements and deformations of the earth’s crust in the Far East of the Russian Federation caused by the Tohoku earthquake on March 11, 2011, and their influence on the results of GNSS observations, Geodeziya i kartografiya, 2011, No. 8, pp. 35–43 (in Russian).
  15. Shestakov N. V., Ohzono M., Takahashi H., Gerasimenko M. D., Bykov V. G., Gordeev E. I., Chebrov V. N., Titkov N. N., Serovetnikov S. S., Vasilenko N. F., Prytkov A. S., Sorokin A. A., Serov M. A., Kondrat’ev M. N., Pupatenko V. V., Modeling of coseismic movements of the Earth’s crust initiated by the deep-focus Sea of Okhotsk earthquake on May 24, 2013, Mw = 8.3, Doklady Akademii nauk, 2014, Vol. 457, No. 4, pp. 1–6 (in Russian).
  16. Altamimi Z., Rebischung P., Métivier L., Collilieux X., ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophysical Research, 2016, Vol. 121, pp. 6109–6131, http://dx.doi.org/10.1002/2016JB013098.
  17. Apel E. V., Burgmann R., Steblov G., Vasilenko N., King R., Prytkov A., Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling, Geophysical Research Letters, 2006, Vol. 33, Issue 11, Art. No. L11303, 5 p., https://doi.org/10.1029/2006GL026077.
  18. Arefiev S., Rogozhin E., Tatevossian R., Rivera L., Cisternas A., The Neftegorsk (Sakhalin Island) 1995 earthquake: a rare interplate event, Geophysical J. Intern., 2000, Vol. 143, pp. 595–607, https://doi.org/10.1046/j.1365-246X.2000.00234.x.
  19. Ashurkov S. V., Sankov V. A., Serov M. A., Lukyanov P. Yu., Grib N. N., Bordonskii G. S., Dembelov M. G., Evaluation of present-day deformations in the Amurian Plate and its surroundings, based on GPS data, Russian Geology and Geophysics, 2016, Vol. 57, pp. 1626–1634, https://doi.org/10.1016/j.rgg.2016.10.008.
  20. Banerjee P., Pollitz F. F., Bürgmann R., Coseismic slip distributions of the 26 December 2004 Sumatra – Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bull. Seismological Society of America, 2007, Vol. 97, No. 1A Suppl., pp. S86–S102, https://doi.org/10.1785/0120050609.
  21. Fan W., Wei S. S., Tian D., McGuire J. J., Wiens D. A., Complex and diverse rupture processes of the 2018 Mw 8.2 and Mw 7.9 Tonga-Fiji deep earthquakes, Geophysical Research Letters, 2019, Vol. 46, Issue 5, pp. 2434–2448, https://doi.org/10.1029/2018GL080997.
  22. Hiromichi T., Yuki H., Takeshi S., Manabu H., Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored by a nationwide continuous GPS array in Japan, Geophysical Research Letters, 1995, Vol. 22, Issue 13, pp. 1669–1672, https://doi.org/10.1029/95GL01659.
  23. Konovalov A. V., Stepnov A. A., Safonov D. A., Kozhurin A. I., Pavlov A. S., Gavrilov A. V., Manaychev K. A., Tomilev D.Ye., Takahashi H., Ichiyanagi M., The Mw = 5.8 14 August 2016 middle Sakhalin earthquake on a boundary between Okhotsk and Eurasian (Amurian) plates, J. Seismology, 2018, Vol. 22, Issue 4, pp. 943–955, https://doi.org/10.1007/s10950-018-9744-y.
  24. Matsu’ura M., Hasegawa Y., A maximum likelihood approach to nonlinear inversion under constraints, Physics of the Earth and Planetary Interiors, 1987, Vol. 47, pp. 179–187, https://doi.org/10.1016/0031-9201(87)90076-8.
  25. Okada Y., Internal deformation due to shear and tensile faults in a half-space, Bull. Seismological Society of America, 1992, Vol. 82, No. 2, pp. 1018–1040, https://doi.org/10.1785/BSSA0820021018.
  26. Pollitz F., Coseismic deformation from earthquake faulting on a layered spherical Earth, Geophysical J. Intern., 1996, Vol. 125, Issue 1, 14 p., https://doi.org/10.1111/j.1365-246X.1996.tb06530.x.
  27. Prytkov A. S., Safonov D. A., Polets A. Y., Model of the Source of the Mw = 5.8 Onor Earthquake, August 14, 2016, Sakhalin, Russian J. Pacific Geology, 2018, Vol. 12, Issue 5, pp. 443–449, https://doi.org/10.1134/S1819714018050093.
  28. Reid H. F., The Elastic-Rebound Theory of Earthquakes, Bull. Department of Geology, 1911, Vol. 2, No. 1, pp. 413–444.
  29. Sanchez L., Seemuller W., Drewes H., Mateo L., Gonzalez G., da Silva A., Pampillon J., Martınez W., Cioce V., Cisneros D., Cimbar S., Long-Term Stability of the SIRGAS Reference Frame and Episodic Station Movements Caused by the Seismic Activity in the SIRGAS Region, Reference Frames for Applications in Geosciences, 2013, pp. 153–161, DOI: 10.1007/978-3-642-32998-2_24.
  30. Shestakov N. V., Takahashi H., Ohzono M., Prytkov A. S., Bykov V. G., Gerasimenko M. D., Luneva M. N., Gerasimov G. N., Kolomiets A. G., Bormotov V. A., Vasilenko N. F., Baek J., Park P., Serov M. A., Analysis of the far-field crustal displacements caused by the 2011 Great Tohoku earthquake inferred from continuous GPS observations, Tectonophysics, 2012, Vol. 524–525, pp. 76–86, https://doi.org/10.1016/j.tecto.2011.12.019.
  31. Simons M., Minson S. E., Sladen A., Ortega F., Jiang J., Owen S. E., Meng L., Ampuero J.-P., Wei S., Chu R., Helmberger D. V., Kanamori H., Hetland E., Moore A. W., Webb F. H., The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries, Science, 2011, Vol. 332, Issue 6036, pp. 1421–1425, DOI: 10.1126/science.1206731.
  32. Tregoning P., Burgette R., McClusky S. C., Lejeune S., Watson C. S., McQueen H., A decade of horizontal deformation from great earthquakes, J. Geophysical Research: Solid Earth, 2013, Vol. 118, pp. 2371–2381, DOI: 10.1002/jgrb.50154.
  33. Vasilenko N. F., Prytkov A. S., Kim C. U., Takahashi H., Coseismic deformations of the Earth’s surface in Sakhalin related to the August 2, 2007, Mw = 6.2 Nevelsk earthquake, Russian J. Pacific Geology, 2009, Vol. 28, No. 5, pp. 424–428, https://doi.org/10.1134/S1819714009050030.
  34. Zonenshain L. P., Savostin L. A., Geodynamics of the Baikal rift zone and plate tectonics of Asia, Tectonophysics, 1981, Vol. 76, Issue 1–2, pp. 1–45, https://doi.org/10.1016/0040-1951(81)90251-1.