ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 189-202

Possibilities of assessing forest belts canopy closure using Sentinel-2 based Bi-Seasonal Forest Index and UAV data

S.S. Shinkarenko 1 , S.A. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 03.02.2023
DOI: 10.21046/2070-7401-2023-20-1-189-202
Protective forest plantations (PFP) play an important role in preventing the degradation of agricultural landscapes, but due to reaching the age limit, a significant part of the PFPs is in an unsatisfactory condition. The current methods for evaluating the canopy density, which is often considered as a condition of plantings’ safety, are very laborious since they are based on expert interpretation of ultra-high resolution aerospace survey data, topographic maps, plans and field surveys using satellite geolocation devices. The article presents the ways to determine PFP density using BSFI (Bi-Seasonal Forest Index) derived from Sentinel 2 data and aerial photography materials from UAV instruments. The analysis of a dense cloud of points obtained by the UAV allowed us to identify a canopy of trees and shrubs and compare the canopy density values with the BSFI data. The BSFI values were calculated based on radiometrically normalized monthly NDVI composites for June-August and the maximum albedo of annual winter composites for the period 2019–2022. We have established a regression dependence of BSFI and density with a coefficient of determination equal to 0.86. The root-mean-square error makes 14.5 %. The use of the obtained results in practice will significantly reduce the volume of ground-based surveys of PFPs to determine their safety.
Keywords: protective afforestation, remote sensing, mapping, Volgograd Region, tree and shrub vegetation, agroforestry
Full text

References:

  1. Agrolesomelioratsiya (Agroforestry), Volgograd: VNIALMI, 2006, 746 p. (in Russian).
  2. Antonov S. A., Spatial analysis of protective forest plantations based on geographic information technologies and remote sensing data, InterKarto. InterGIS. Geoinformatsionnoe obespechenie ustoichivogo razvitiya territorii (InterCarto. InterGIS. GI Support of Sustainable Development of Territories: Proc. Intern. Conf.), Moscow: Moscow Univ. Press, 2020, Vol. 26, Pt. 2, pp. 408–420 (in Russian), DOI: 10.35595/2414-9179-2020-2-26-408-420.
  3. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p.
  4. Bartalev S. A., Bogodukhov M. A., Zharko V. O., Sidorenkov V. M. (2022a), Investigation of the possibilities of using ICESat-2 data to estimate the height of forests in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 195–206 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-195-206.
  5. Bartalev S. A., Vorushilov I. I., Egorov V. A. (2022b), Creation and radiometric normalisation of cloud-free composite satellite images of snow-covered terrestrial surface for forest monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 57–69 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-57-69.
  6. Vypritskiy A. A., Shinkarenko S. S., Analysis of soil and climatic factors influence on the protective forest condition based on Sentinel 2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 147–163 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-147-163.
  7. Dubenok N. N., Tanyukevich V. V., Baboshko O. I., Phytosaturation of field protecting forest stripes and their ameliorative influence on cropping power of agricultural crops, Vestnik rossiiskoi sel’skokhozyaistvennoi nauki, 2016, No. 1, pp. 27–30 (in Russian).
  8. Zharko V. O., Bartalev S. A., Egorov V. A., Investigation of forest growing stock volume estimation possibilities over Russian Primorsky Krai region using Proba-V satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 157–168 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-157-168.
  9. Zasoba V. V., Cheplyanskii I. Ya., Popovichev V. V., Seventy years of experience in creating state protective forest belts in the steppe zone of Russia, Zhivye i biokosnye sistemy, 2019, No. 27, p. 3 (in Russian).
  10. Kashnitskii A. V., Burtsev M. A., Proshin A. A., Technology to create cloud-free composites from Sentinel 2 satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 76–85 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-76-85.
  11. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  12. Medvedev A. A., Telnova N. O., Kudikov A. V., Alekseenko N. A., Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 150–163 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-150-163.
  13. Narozhnyaya A. G., Chendev Yu. G., The study of the modern ecological state of shelterbelts using GIS and remote sensing data, InterKarto. InterGIS. Geoinformatsionnoe obespechenie ustoichivogo razvitiya territorii (InterCarto. InterGIS. GI Support of Sustainable Development of Territories: Proc. Intern. Conf.), Moscow: Moscow Univ. Press, 2020, Vol. 26, Part 2, pp. 54–65 (in Russian), DOI: 10.35595/2414-9179-2020-2-26-54-65.
  14. Rulev A. S., Yuferev V. G., Anopin V. N., Rulev G. A., Geoinformation analysis of the state of roadside forest plantations, Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2014, No. 3(47), pp. 42–45 (in Russian).
  15. Rulev A. S., Kosheleva O. Yu., Shinkarenko S. S., Assessment of woodiness in agrolandscapes of the Southern Volga upland according to NDVI, Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee obrazovanie, 2016, No. 4(44), pp. 24–32 (in Russian).
  16. Silova V. A., Influence of forest reclamation improvement on the production area yield in the dry steppe zone, Nauchnyi zhurnal Rossiiskogo nauchno-issledovatel’skogo instituta problem melioratsii, 2021, Vol. 11, No. 2, pp. 68–81 (in Russian), DOI: 10.31774/2222-1816-2021-11-2-68-81.
  17. Terekhin E. A., Spatial analysis of tree vegetation of abandoned arable lands using their spectral response in forest-steppe zone of Central Chernozem Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 142–156 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-142-156.
  18. Terekhin E. A., Long-term changes in spectral response of abandoned agricultural lands in various climate and environmental conditions of European Russia in the early 21st century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 111–122 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-111-122.
  19. Terekhin E. A., Effect of abandoned agricultural lands forest cover on Sentinel 2 spectral response in forest-steppe natural zone, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 223–235 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-223-235.
  20. Terekhov A. G., Makarenko N. G., Pak I. T., Automatic classification algorithm of quick bird images in the problem of evaluating of forest completeness, Komp’yuternaya optika, 2014, Vol. 38, No. 3, pp. 580–583 (in Russian), DOI: 10.18287/0134-2452-2014-38-3-580-583.
  21. Tkachenko N. A., Koshelev A. V., Mapping of aprotective woodiness of agrolandscapes of Volgograd Zavolzhye, Vestnik APK Stavropol’ya, 2017, No. 2(26), pp. 137–143 (in Russian).
  22. Khovratovich T. S., Bartalev S. A., Kashnitskii A. V., Forest change detection based on sub-pixel estimation of crown cover density using bitemporal satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 102–110 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-102-110.
  23. Cheplyanskii I. Ya., Turchin T. Ya., Ermolova A. S., Remote monitoring of state forest shelterbelts in the steppe zone of European Russia, Izvestiya vuzov. Lesnoi zhurnal, 2022, No. 3, pp. 44–59 (in Russian), DOI: 10.37482/0536-1036-2022-3-44-59.
  24. Shinkarenko S. S., Bartalev S. A., NDVI seasonal dynamics of the North Caspian pasture landscapes according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 179–194 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-179-194.
  25. Shinkarenko S. S., Bartalev S. A., Vasilchenko A. A. (2022a), Method for protective forest plantations mapping based on multi-temporal high spatial resolution satellite images and Bi-Season Forest Index, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 207–222 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-207-222.
  26. Shinkarenko S. S., Doroshenko V. V., Berdengalieva A. N. (2022b), Burned areas dynamics in zonal landscapes of the South-East of The European part of Russia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2022, Vol. 86, No. 1, pp. 122–133 (in Russian), DOI: 10.31857/S2587556622010113.
  27. Begimova M., Climate indicators for forest landing and evaluation of forest shelterbelts, E3S Web Conf., 2021, Vol. 227, Art. No. 02004, DOI: 10.1051/e3sconf/202122702004.
  28. Chianucci F., Disperati L., Guzzi D., Bianchini D., Nardino V., Lastri C., Rindinella A., Corona P., Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV, Intern. J. Applied Earth Observation and Geoinformation, 2016, Vol. 47, pp. 60–68, DOI: 10.1016/j.jag.2015.12.005.
  29. Dronova I., Kislik C., Dinh Z., Kelly M. A., Review of Unoccupied Aerial Vehicle Use in Wetland Applications: Emerging Opportunities in Approach, Technology, and Data, Drones, 2021, Vol. 5, No. 4, Art. No. 45, DOI: 10.3390/drones5020045.
  30. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853, DOI: 10.1126/science.1244693.
  31. Koshelev A. V., Tkachenko N. A., Shatrovskaya M. O., Decoding of forest belts using satellite images, IOP Conf. Ser.: Earth and Environmental Science, 2021, Vol. 875, Art. No. 012065, DOI: 10.1088/1755-1315/875/1/012065.
  32. Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P., A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery, Forests, 2013, Vol. 4, No. 4, pp. 922–944, DOI: 10.3390/f4040922.
  33. Loupian E. A., Bourtsev M. A., Proshin A. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Radchenko M. V., Tolpin V. A., Uvarov I. A., Usage Experience and Capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14, No. 1, Art. No. 77, https://doi.org/10.3390/rs14010077.
  34. Nasiri V., Darvishsefat A. A., Arefi H., Griess V. C., Sadeghi S. M. M., Borz S. A., Modeling Forest Canopy Cover: A Synergistic Use of Sentinel 2, Aerial Photogrammetry Data, and Machine Learning, Remote Sensing, 2022, Vol. 14, No. 6, Art. No. 1453, DOI: 10.3390/rs14061453.
  35. Navarro A., Young M., Allan B., Carnell P., Macreadle P., The application of Unmanned Aerial Vehicles (UAVs) to estimate aboveground biomass of mangrove ecosystems, Remote Sensing of Environment, 2020, Vol. 242, Art. No. 111747, DOI: 10.1016/j.rse.2020.111747.
  36. Pilas I., Gašparovic M., Novkinic A., Klobucar D., Mapping of the Canopy Openings in Mixed Beech – Fir Forest at Sentinel 2 Subpixel Level Using UAV and Machine Learning Approach, Remote Sensing, 2020, Vol. 12, Art. No. 3925, DOI: 0.3390/rs12233925.
  37. Yang X., Li F., Fan W., Liu G., Yu Y., Evaluating the efficiency of wind protection by windbreaks based on remote sensing and geographic information systems, Agroforestry Systems, 2021, Vol. 95, pp. 353–365, DOI: 10.1007/s10457-021-00594-x.
  38. Yu T., Ni W., Zhang Z., Liu Q., Sun G., Regional Sampling of Forest Canopy Covers Using UAV Visible Stereoscopic Imagery for Assessment of Satellite-Based Products in Northeast China, J. Remote Sensing, 2022, Vol. 2022, Art. No. 9806802, DOI: 10.34133/2022/9806802.