Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 205-218
Estimation of inertial frequency shifts in the central Japan Sea from surface drifter data
O.O. Trusenkova
1 , V.B. Lobanov
1 , S.Yu. Ladychenko
1 1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 22.12.2022
DOI: 10.21046/2070-7401-2023-20-1-205-218
Using wavelet rotary spectra, inertial oscillations of two surface drifters in the central Japan Sea in October and November 2011 were analyzed and significant frequency (period) shifts from the local inertial frequencies (periods) were found. When the buoys drifted under the wind forcing, the 0.5–1 hour shifts were the most frequent, with the period either increased or decreased. When the buoys drifted with currents, the shifts reached 1.5–5.7 hours, which can be related to the background relative vorticity (Kunze, 1985). Using Kunze’s formula, the corresponding Rossby numbers along the drift trajectory were estimated as 0.15–0.5. There is a qualitative agreement with vorticity estimated from satellite altimetry for large mesoscale eddies, with the sizes of 100 km and more, although vorticity estimated from the buoys is several times stronger. As for submesoscale dynamic structures, with the sizes less than 50 km, the buoy and altimetry vorticity estimates can have different signs but the buoy-based estimates are confirmed by infrared satellite imagery.
Keywords: Japan Sea, surface buoy, drift, satellite altimetry, infrared imagery, wavelet transform, rotary spectrum, inertial oscillations, relative vorticity, Rossby number
Full textReferences:
- Gidrometeorologiya i gidrokhimiya morei. T. 8. Yaponskoe more. T. 1. Gidrometeorologicheskie usloviya (Hydrometeorology and hydrochemistry of the Russian seas. Vol. 8. The Japan Sea. Issue 1. Hydrometeorological conditions), Vasil’ev A. S., Kosarev A. N., Terziev F. S. (eds), Saint Peterburg: Gidrometeoizdat, 2003, 394 p. (in Russian).
- Ginzburg A. I., Kostyanoi A. G., Ostrovskii A. G., Sufrace circulation of the Japan Sea (satellite information and drifters data), Issledovanie Zemli iz kosmosa, 1998, No. 1, pp. 66–83 (in Russian).
- Dubina V. A., Katin I. O., Transboundary transfer features in the northwestern part of the Japan Sea based on the multiyear satellite imagery, Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2018, No. 6, pp. 13–19 (in Russian).
- Lavrova O. Yu., Sabinin K. D., Manifestations of inertial oscillations in satellite images of the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 60–73 (in Russian), DOI: 10.21046/2070-7401-2016-13-4-60-73.
- Ladychenko S. Yu., Lobanov V. B., Mesoscale Eddies in the Area of Peter the Great Bay on Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 9, pp. 939–951, DOI: 10.1134/S0001433813090193.
- Lobanov V. B., Ponomarev V. I., Salyuk A. N., Tishchenko P. Ya., Talley L. D., Structure and dynamics of mesoscale eddies in the northwestern Japan Sea, In: Dal’nevostochnye morya Rossii, Kn. 1, Okeanologicheskie issledovaniya, Moscow: Nauka, 2007, pp. 450–473 (in Russian).
- Lobanov V. B., Sergeev A. F., Trusenkova O. O., Ladychenko S. Yu., Mar’ina E. N., Shcherbinin P. E., Instrumental observations and statistical analysis of currents off the southeastern Primorye, the Japan Sea, in the autumn-to-winter transition period, Podvodnye issledovaniya i robototekhnika, 2022, No. 3, pp. 54–66 (in Russian), DOI: 10.37102/1992-4429_2022_41_03_05.
- Motyzhev S. V., Creation of Drifter Technology for the Ocean and the Atmosphere Monitoring, Physical Oceanography, 2016, No. 6, pp. 67–81 (in Russian).
- Nikitin A. A., Yurasov G. I., Mesoscale eddies in the Japan Sea by satellite data, Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 2–57 (in Russian).
- Ponomarev V. I., Faiman P. A., Dubina V. A., Ladychenko S. Yu., Lobanov V. B., Mesoscale eddy dynamics over the continental slope and shelf in the northwestern Japan Sea (simulation and remote sensing results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 100–104 (in Russian).
- Ponomarev V. I., Faiman P. A., Dubina V. A., Mashkina I. V., Features of the mesoscale and submesoscale dynamics at the continental slope of the Japan Basin and Primorye shelf, the Japan Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 155–165 (in Russian).
- Trusenkova O. O., Modeling of the regional circulation features in the Japan Sea under the various kinds of forcing, Izv. TINRO, 2012, Vol. 169, pp. 118–133 (in Russian).
- Trusenkova O. O., Lobanov V. B., Ladychenko S. Yu., Kaplunenko D. D., Drift of Surface Lagrangian Buoys in the Central Japan Sea in October–November 2011, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 9, pp. 969–979, DOI: 10.1134/S0001433821090644.
- Trusenkova O. O., Lobanov V. B., Lazaryuk A. Yu., Currents in the southwestern Peter the Great Bay, the Sea of Japan, from the stationary WAVESCAN buoy data in 2016, Oceanology, 2022, Vol. 62, No. 3, pp. 365–379, DOI: 10.1134/S0001437022030146.
- Faiman P. A., Ponomarev V. I., Diagnostic simulation of the circulation in Peter the Great Bay, the Japan Sea, based on data of the FERHRI research cruises in 2007–2010, Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2018, No. 1, pp. 60–70 (in Russian).
- Alford M. H., MacKinnon J. A., Simmons H. L., Nash J. D., Near-Inertial Internal Gravity Waves in the Ocean, Annual Review of Marine Science, 2016, Vol. 8, pp. 95–123, DOI: 10.1146/annurev-marine-010814-015746.
- Chaigneau A., Pizarro O., Rojas W., Global climatology of near-inertial current characteristics from Lagrangian observations, Geophysical Research Letters, 2008, Vol. 35, Art. No. L13603, DOI: 10.1029/2008GL034060.
- Danchenkov M. A., Aubrey D. G., Feldman K. L., Oceanography of area close to the Tumannaya River mouth (the Sea of Japan), Pacific Oceanography, 2003, Vol. 1, No. 1, pp. 61–69.
- Fayman P. A., Prants S. V., Budyansky M. V., Uleysky M. Yu., Coastal summer eddies in the Peter the Great Bay of the Japan Sea: in situ data, numerical modeling and Lagrangian analysis, Continental Shelf Research, 2019, Vol. 18, pp. 143–155, DOI: 10.1016/j.csr.2019.05.002.
- Gonella A., A rotary-component method for analyzing meteorological and oceanographic vector time series, Deep-Sea Research, 1972, Vol. 19, No. 12, pp. 833–846.
- Kunze E., Near-Inertial Wave Propagation in Geostrophic Shear, J. Physical Oceanography, 1985, Vol. 15, No. 5, pp. 544–565.
- Lee D.-K., Niiler P. P., The energetic surface circulation patterns of the Japan/East Sea, Deep-Sea Research II, 2005, Vol. 52, No. 11-1, pp. 1547–1563, DOI: 10.1016/j.dsr2.2003.08.008.
- Lee D.-K., Niiler P. P., Eddies in the southwestern Japan/East Sea, Deep-Sea Research, Part I, Oceanographic Research Papers, 2010, Vol. 57, No. 10, pp. 1233–1242, DOI: 10.1016/j.dsr.2010.06.002.
- Liu P. C., Miller G. S., Wavelet transforms and ocean current data analysis, J. Atmospheric and Oceanic Technology, 1996, Vol. 13, No. 5, pp. 1090–1099.
- McWilliams G. S., Submesoscale currents in the ocean, Proc. Royal Society A: Mathematical Physical and Engineering Sciences, 2016, Vol. 472, Art. No. 20160117, DOI: 10.1098/rspa.2016.0117.
- Oceanography of the East Sea (Japan Sea), Switzerland: Springer Intern. Publ., 2016, 460 p.
- Park J. J., Kim K., King B. A., Global statistics of inertial motions, Geophysical Research Letters, 2005, Vol. 32, No. 14, Art. No. L14612, DOI: 10.1029/2005GL023258.
- Prants S. V., Ponomarev V. I., Budyansky M. V., Uleysky M. Y., Fayman P. A., Lagrangian analysis of vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea, Ocean Modeling, 2015, Vol. 86, pp. 128–140, DOI: 10.1016/j.ocemod.2014.12.010.
- Prants S. V., Budyansky M. V., Uleysky M. Y., Statistical analysis of Lagrangian transport of subtropical waters in the Japan Sea based on AVISO altimetry data, Nonlinear Processes in Geophysics, 2017, Vol. 24, No. 1, pp. 89–99, DOI: 10.5194/npg-24-89-2017.
- Torrence C., Compo G. P., A practical guide to wavelet analysis, Bull. American Meteorological Society, 1998, Vol. 79, No. 1, pp. 61–78.