Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 133-143
Influence of observation conditions on the accuracy of NDVI vegetation index calculation from Earth remote sensing data
A.I. Alexanin
1, 2 , A.N. Timofeev
2 1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
Accepted: 29.12.2022
DOI: 10.21046/2070-7401-2023-20-1-133-143
The problem of calculating the normalized vegetation index (NDVI) from satellite data is considered. The index values calculated from the MODIS/Aqua radiometer data by the SeaDAS software package algorithm are compared with the values obtained at the research site La Crau (France) for 7 years. The site is located near the Mediterranean coast and is a flat field where grass grows. The measurements are carried out by an automatic photometric station ROSAS. Calculations show the proximity of satellite and field measurements: bias — 0.005; standard deviation 0.03. The algorithm used does not take into account the effect of aerosol on the NDVI value. However, the errors due to the lack of accounting for aerosol lie within the limits of the total calculation error. There is a slight dependence of the error on the zenith angle of the sun, which varied in the range from 20 to 70. The bidirectional reflectance distribution function of the surface on the site is uniform, except for the directions close to the sunbeam. The measurements were far from the sunbeam zone. However, the accuracy of the calculation depends on the difference between the azimuth angle of the site survey and the azimuth to the sun. The NDVI mismatches due to differences in the central wave numbers of different satellites also turned out to be significant. The comparison was made for the following radiometers: MODIS/Aqua, Landsat-8/OLI-1, Landsat-9/OLI-2, Kanopus-V/MSS.
Keywords: vegetation index NDVI, atmospheric image correction, MODIS/Aqua
Full textReferences:
- Vasil’ev A. I., Stremov A. S., Kovalenko V. P., Mikheev A. A., Methodology of Kanopus-V MSS and Landsat ETM+ basic product comparison, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 36–48 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-36-48.
- Selin V. A., Markov A. N., Vasil’ev A. I., Korshunov A. P., Geoinformation service “Bank of basic products”, Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2019, Vol. 6, No. 1, pp. 40–48 (in Russian), DOI: 10.30894/issn2409-0239.2019.6.1.40.48.
- Khailov M. N., Zaichko V. A., Scientific and technical problems of collection, storage, processing, distribution and application of space geospatial information in the interests of Russian consumers, Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii, 2020, No. 1, pp. 6–15 (in Russian), http://2020.raystudio.ru/media/pdf/dzz/dzz-2020-01_n.pdf (accessed 19.08.2022).
- Albarakat R., Lakshmi V., Comparison of normalized difference vegetation index derived from Landsat, MODIS, and AVHRR for the Mesopotamian Marshes between 2002 and 2018, Remote Sensing, 2019, Vol. 11, ID 1245, 16 p., DOI: 10.3390/rs11101245.
- Chander G., Markham B. L., Helder D. L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 2009, Vol. 113, pp. 893–903, https://doi.org/10.1016/j.rse.2009.01.007.
- Czapla-Myers J., McCorkel J., Anderson N., Thome K., Biggar S., Helder D., Aaron D., Leigh L., Mishra N., The ground-based absolute radiometric calibration of Landsat 8 OLI, Remote Sensing, 2015, Vol. 7, pp. 600–626, https://doi.org/10.3390/rs70100600.
- Gumley L., Descloitres J., Schmaltz J., Creating reprojected true color MODIS images: A tutorial, Version 1.0.1, 2007, 19 p., https://ftp.ssec.wisc.edu/pub/willemm/Creating_Reprojected_True_Color_MODIS_Images_A_Tutorial_process.pdf (accessed 31.07.2022).
- Holben B. N., Characteristics of maximum-value composite images from temporal AVHRR data, Intern. J. Remote Sensing, 1986, Vol. 7, No. 2, pp. 1417–1434, DOI: 10.1080/01431168608948945.
- Huang Sh., Tang L., Hupy J. P., Wang Ya., Shao G., A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. Forestry Research, 2021, Vol. 32, No. 1, pp. 1–6, https://doi.org/10.1007/s11676-020-01155-1.
- Huete A., Justice Ch., Leeuwen W., MODIS vegetation index (mod 13), Algorithm theoretical basis document, University of Arizona, University of Virginia, 1999, 129 p., https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf.
- Jordan C. F., Derivation of leaf-area index from quality of radiation on the forest floor, Ecology, 1969, Vol. 50, No. 4, pp. 663–666, https://doi.org/10.2307/1936256.
- Lee K., Kim K., Lee S.-G, Kim Yo., Determination of the normalized difference vegetation index (NDVI) with top-of-canopy (TOC) reflectance from a KOMPSAT-3A image using orfeo toolBox (OTB) extension, ISPRS Intern. J. Geo-Information, 2020, Vol. 9, ID 257, 16 p., https://doi.org/10.3390/ijgi9040257.
- Meygret A., Santer R., Berthelot B., ROSAS a Robotic station for atmosphere and surface characterization dedicated to on-orbit calibration, Proc. SPIE, 2011, Vol. 8153, ID. 815311, DOI: 10.1117/12.892759.
- RadCalNet guidance site characterisation. CEOS reference: QA4EO-WGCV-RadCalNet-G2_v1. Version 1.0, 2018, https://www.radcalnet.org/documentation/RadCalNetGenDoc/G2-RadCalNetGuidance-SiteCharacterisation_V1.pdf.
- Rouse J. W., Haas R. Y., Schell J. A., Deering D. W., Monitoring vegetation systems in the great plains with ERTS, 3 rd ERTS Symp., NASA, Goddard Space Flight Center, 1973, Vol. 1, Sect. A, Paper-A20, pp. 309–317, https://ntrs.nasa.gov/citations/19740022614 (accessed 31.07.2022).
- Uudus B., Park K.-A., Kim K.-R., Kim J., Ryu J.-H., Diurnal variation of NDVI from an unprecedented high-resolution geostationary ocean colour satellite, Remote Sensing Letters, 2013, Vol. 4, No. 7, pp. 639–647, DOI: 10.1080/2150704X.2013.781285.
- Wang Sh., Yang M., Li J., Shen Q., Zhang F., MODIS surface reflectance product (MOD09) validation for typical inland waters in China, Ocean Remote Sensing and Monitoring from Space: Proc. SPIE, 2014, Vol. 9261, ID 92610F, DOI: 10.1117/12.2068628.
- Xie Y., Zhao X., Li L., Wang H., Calculating NDVI for Landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye city, China, 18 th Intern. Conf. Geoinformatics, 2010, pp. 1–4, DOI: 10.1109/GEOINFORMATICS.2010.5567553.