Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 271-286
On cloud type classification by a threshold method based on satellite IR data
1 State Research Center for Space Hydrometeorology “Planeta”, Moscow, Russia
Accepted: 05.12.2022
DOI: 10.21046/2070-7401-2023-20-1-271-286
Clouds have a great influence on the weather and the climate through forming radiation, heating and water exchange between the earth and the atmosphere. Each cloud type is connected to a certain set of meteorological processes and events including dangerous ones. That is why any information about cloud classes (their types, forms and shapes) is very important for both operational weather monitoring and studying the climate. The cloud classification adopted by the World Meteorological Organization is discussed below, so is a review of the main satellite cloud classifications based on satellite measurements of albedo and brightness temperatures. The author step-by-step introduces algorithms of a threshold pixel-by-pixel cloud classification technology utilizing only brightness temperatures in different spectral channels, gives a detailed description of classified cloud classes, mentions possible sources of errors and difficulties when cloud analyzing. The algorithms, offered by the author, can be applied to AVHRR/NOAA, SEVIRI/Meteosat, MSU-MR/Meteor-M, MSU-GS-VE/Arktika-M infrared data and similar satellite information.
Keywords: cloud types, satellite cloud classification, cloud analysis, threshold methods, AVHRR/NOAA, SEVIRI/Meteosat, MSU-MR/Meteor-M, MSU-GS-VE/Arktika-M
Full textReferences:
- Asmus V. V., Milekhin O. E., Kramareva L. S., Khailov M. N., Shirshakov A. E., Shumakov I. A., The first in the world high elliptic hydrometeorological satellite system “Arktika-M”, Meteorologia i gidrologiya, 2021, No. 12, pp. 11–26 (in Russian), DOI: 10.52002/0130-2906-2021-12-11-26.
- Astafurov V. G., Skorokhodov A. V., Using results of satellite cloud classification for solving climatologic and meteorological problems, Meteorologia i gidrologiya, 2021, No. 12, pp. 57–70 (in Russian), DOI: 10.52002/0130-2906-2021-57-70.
- Astafurov V. G., Kur’yanovich K. V., Skorokhodov A. V., Methods of automatic cloud classification based on MODIS data, Issledovaniya Zemli iz kosmosa, 2016, No. 3, pp. 1–11 (in Russian).
- Atmosfera (Atmosphere), Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., Volkovitsky O. A., Petrov N. N., Reitenbakh R. G., Smirnov V. I., Chernikov A. A. (eds.), Leningrad: Gidrometizdat, 1991, 510 p. (in Russian).
- Bespalov D. P., Devyatkin A. M., Dovgalyuk Yu. A., Kondratyuk V. I., Kuleshov Yu. V., Svetlova T. P., Suvorov S. S., Timofeev V. I., Atlas oblakov (Atlas of clouds), Saint Petersburg: RIF D’Art, 2011, 248 p. (in Russian).
- Brylev G. B., Meteorologicheskie avtomatizirovannye radiolokatsionnye seti (Meteorological automatic radio-location net), Saint Petersburg: Gidrometizdat, 2002, 332 p. (in Russian).
- Volkova E. V., Kukharsky A. V., The automated technology for retrieving cloud cover properties, precipitation and weather hazards based on SEVIRI/Meteosat (MSG) data for the European part of Russia, Gidrometeorologicheskie issledovaniya i prognozy, 2020, No. 4(378), pp. 43–62 (in Russian), DOI: 10.37162/2618-9631-2020-4-43-62.
- Volkova E. V., Uspenskii A. B., Estimation of cloud cover parameters and precipitation utilizing polar-orbiting and geostationary satellite data, Issledovaniya Zemli iz kosmosa, 2015, No. 5, pp. 30–43 (in Russian).
- Volkova E. V., Andreev A. I., Kostornaya A. A., Cloud cover and precipitation monitoring based on data from polar orbiting and geostationary satellites, Meteorologia i gidrologiya, 2021, No. 12, pp. 45–56 (in Russian), DOI: 10.52002/0130-2906-2021-12-45-56.
- Zverev A. S., Sinopticheskaya meteorologiya (Synoptic meteorology), Leningrad: Gidrometizdat, 1977, 712 p. (in Russian).
- Kod dlya operativnoi peredachi dannyh prizemnykh meteorologicheskikh nablyudenii s seti stantsii Rosgidrometa (KN-01 SYNOP) (KN-01 SYNOP. The codes for operations sending data from the Roshydromet net of meteorological ground-based stations), Saint Petersburg: Gidrometizdat, 2012, 78 p. (in Russian).
- Kostornaya A. A., Saprykin E. I., Zakhvatov M. G., Tokareva Yu. V., A method of cloud detection from satellite data, Meteorology and hydrology, 2017, No. 12, pp. 16–24 (in Russian).
- Matveev L. T., Osnovy obshchei meteorologii. Fizika atmosfery (The foundations of meteorology. Physics of the atmosphere), Leningrad: Gidrometizdat, 1965, 874 p. (in Russian).
- Oblaka i oblachnaya atmosfera (Clouds and cloud atmosphere), Mazin I. P., Khrgian A. H. (eds.), Leningrad: Gidrometizdat, 1989, 647 p. (in Russian).
- Pretor-Pinney G., The Cloudspotter’s Guide, Moscow: Livebook, 2015, 384 p. (in Russian).
- Rukovodstvo po kratkosrochnym prognozam pogody (Manual guide book for very short range forecasting), Part 1, Leningrad: Gidrometizdat, 1986, 703 p. (in Russian).
- Skorokhodov A. V., The cloud classification at night based on VIIRS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17. No. 3, pp. 240–251 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-240-251.
- Khromov S. P., Mamontova L. I., Meteorologicheskii slovar’ (Meteorological dictionary), Leningrad: Gidrometizdat, 1974, 568 p. (in Russian).
- Khromov S. P., Petrosyants M. A., Meteorologiya i klimatologiya (Meteorology and climatology), Moscow: Moscow University Publ., 2001, 526 p. (in Russian).
- Dim J. R., Takamura T., Alternative approach for satellite cloud classification: edge gradient application, Advances in Meteorology, 2013, Art. ID 584816, https://www.hindawi.com/journals/amete/2013/584816.
- Heidinger A., Walther A., Botambekov D., Straka III W., Wanzong S., Li Y., The Clouds from AVHRR Extended (CLAVR-x), User’s guide, Ver. 6.0.4, Aug. 2019, 64 p.
- Jiang Yu., Cheng W., Gao F., Zhang S., Wang S., Liu C., Liu J., A cloud classification method based on convolutional neural network for FY-4A satellites, Remote Sensing, 2022, Vol. 14(10), Art. No. 2314, https://doi.org/10.3390/rs14102314.
- Jin W., Gong F., Zeng X., Fu R., Classification of clouds in satellite imagery using adaptive fuzzy sparse representation, Sensors, 2016, Vol. 16(12), Art. No. 2153, https://doi.org/10.3390/s16122153.
- Kerdraon G., Le Glaue H., EUMETSAT NWC SAF Report to Nowcasting and very short range forecasting, Scientific and validation report for the cloud product processors of the NWC/GEO/NWC/CDOP3/GEO-CMS/SCI/VR/Cloud, Issue 1, Rev. 1, Apr. 10, 2019, 51 p.
- Purbantoro B., Aminuddin J., Manago N., Toyoshima K., Lagrosas N., Sumantyo J. T. S., Kuze H., Comparison of cloud type classification with split-window algorithm based on different infrared band combinations of Himawari-8 satellite, Remote Sensing, 2018, Vol. 11(24), Art. No. 2944, https://doi.org/10.3390/rs11242944.
- Sedlar J., Karlsson K. G., Algorithm Theoretical Baseline Document, Joint Cloud property Histogram products AVHRR/SEVIRI, CM-SAF Products CM-11, CM-12, Issue 1.1, EUMETSAT Satellite Application Facility on Climate Monitoring, Sept. 27, 2011, SAF/CM/SMHI/PDC/CTY, 18 p.
- Stengel M., Karlsson K. G., Meirink J. F., Clouds, Product User Manual, Ver. 1.8, EUMETSAT Satellite Application Facility on Climate Monitoring, Feb. 22, 2015, SAF/CM/DWD/PUM/CLOUDS, 99 p.