ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 265-279

Three-dimensional structure and dynamics of waters in coastal eddy dipoles in the southeastern Baltic Sea: Results of concurrent satellite and field measurements in summer 2021

E.V. Krayushkin 1 , O.Yu. Lavrova 1 , K.R. Nazirova 1 , D.A. Elizarov 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 23.12.2022
DOI: 10.21046/2070-7401-2022-19-6-265-279
The results of quasi-synchronous satellite and experimental field observations of two submesoscale eddy dipoles in the coastal zone of the southeastern Baltic Sea near the coast of Kaliningrad Region are presented. The parameters of eddy dipole dynamics, namely, duration of the process in the sea water and its propagation velocity and direction, as well as atmospheric conditions favorable for the occurrence of eddy dipoles are determined from consecutive satellite images of high resolution. The characteristics of the three-dimensional structure of eddy dipoles are determined using the data of an acoustic current profiler and a hydrological probe obtained concurrently with satellite survey. The depth of vortical motion penetration into the water column is discussed and it is shown that such processes are not purely surface phenomena but have their influence down to a depth of 20 m and more. Direct measurements of current velocities and directions within particular parts of eddy dipole demonstrate essentially greater dynamics of waters inside such formations compared to their displacement velocity. The differences in the anticyclonic and cyclonic parts of the dipoles are evaluated. Hydrological observations show the influence of the active cyclonic part of a dipole on surrounding waters manifested in both capture (rise) of deeper water and accumulation of surfactants within it.
Keywords: Baltic Sea, eddy dipole, three-dimensional structure, satellite monitoring, concurrent field and satellite measurements
Full text


  1. Ginzburg A., Bulycheva E., Kostianoy A., Solovyov D., Vortex dynamics in the Southeastern Baltic Sea from satellite radar data, Oceanology, 2015, Vol. 55, No. 6, pp. 805–813, DOI: 10.1134/S0001437015060065.
  2. Gurova E. S., On the formation and dynamics of an eddy at the coast of southeast Baltic based on remote sensing data, Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta, 2012, Issue 1, pp. 16–21 (in Russian).
  3. Elkin D. N., Zatsepin A. G., Laboratory investigation of the mechanism of the periodic eddy formation behind capes in a coastal sea, Ocanology, 2013, Vol. 53, No. 1, pp. 24–35, DOI: 10.1134/S00014370120500625.
  4. Zatsepin A. G., Baranov V. I., Kondrashov A. A., Korzh A. O., Kremenetskiy V. V., Ostrovskii A. G., Soloviev D. M., Submesoscale Eddies at the Caucasian Black Sea Shelf and the Mechanisms of Their Generation, Oceanology, 2011, Vol. 51, No. 4, pp. 554–567, DOI: 10.1134/S0001437011040205.
  5. Karimova S. S., Lavrova O. Yu., Solov’ev D. M., Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 9, pp. 1006–1013, DOI: 10.1134/S0001433812090071.
  6. Kostianoy A. G., Ginzburg A. I., Sheremet N. A., Lavrova O. Yu., Mityagina M. I., Small-scale eddies in the Black Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 248–259 (in Russian).
  7. Krayushkin E. V., Lavrova O. Yu., Nazirova K. R., Alferyeva Ya. O., Soloviev D. M., Formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214–221 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-214-221.
  8. Krayushkin E. V., Nazirova K. R., Lavrova O. Yu., Knyazev N. A., Submesoscale cyclonic eddy behind Cape Gvardeisky in the southeastern Baltic Sea: satellite observation and concurrent measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 290–299 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-290-299.
  9. Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Complex Satellite Monitoring of the Russian Seas, Moscow: IKI RAN, 2011, 480 p. (in Russian).
  10. Lavrova O. Yu., Mityagina M. I., Sabinin K. D., Serebryany A. N., Study of hydrodynamic processes in the shelf zone on the basis of satellite information and data from subsatellite measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 98–129 (in Russian).
  11. Lavrova O. Yu., Mityagina M. I., Uvarov I. A., Loupian E. A., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  12. Mityagina M. I., Lavrova O. Yu., Satellite Observations of Eddy and Wave Processes in the Coastal Waters of the North-Eastern Black Sea, Issledovaniya Zemli iz kosmosa, 2009, No. 5, pp. 72–79 (in Russian).
  13. Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54(4), pp. 631–654.
  14. Karimova S., Gade M., Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery, Intern. J. Remote Sensing, 2016, Vol. 37(10), pp. 2394–2414, DOI: 10.1080/01431161.2016.1145367.
  15. Kostianoy A. G., Ginzburg A. I., Lavrova O. Y., Mityagina M. I., Satellite remote sensing of submesoscale eddies in the Russian Seas, The Ocean in Motion. Circulation, Waves, Polar Oceanography, Velarde M., Tarakanov R., Marchenko A (eds.), Springer-Verlag, 2018, pp. 397–413,
  16. Lavrova O., Krayushkin E., Golenko M., Golenko N., Effect of wind and hydrographic conditions on the transport of Vistula Lagoon waters into the Baltic Sea: results of a combined experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 9, pp. 5193–5201, DOI: 10.1109/JSTARS.2016.25806022016.
  17. Lavrova O. Yu., Krayushkin E. V., Nazirova K. R., Strochkov A. Ya., Vortex structures in the Southeastern Baltic Sea: satellite observations and concurrent measurements, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2018, Vol. 10784, Art. No. 1078404, DOI: 10.1117/12.2325463.
  18. Marmorino G. O., Holt B., Molemaker M. J., DiGiacomo P. M., Sletten M. A., Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight, J. Geophysical Research, 2010, Vol. 115, Issue C5, Art. No. C05010,
  19. Zhurbas V., Oh I. S., Park T., Formation and decay of a longshore baroclinic jet associated with transient coastal upwelling and downwelling: A numerical study with applications to the Baltic Sea, J. Geophysical Research, 2006, Vol. 111, Art. No. C04014.
  20. Zhurbas V., Väli G., Kostianoy A., Lavrova O., Hindcast of the mesoscale eddy field in the Southeastern Baltic Sea: Model output vs satellite imagery, Russian J. Earth Sciences, 2019, Vol. 19, Art. No. ES4006, DOI: 10.2205/2019ES000672.