ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 222-233

Analysis of hydrological changes in mineral lakes in Northern Eurasia based on SMOS satellite data

A.N. Romanov 1 , I.V. Ryabinin 1 , I.V. Khvostov 1 , D.A. Romanov 1 
1 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
Accepted: 02.12.2022
DOI: 10.21046/2070-7401-2022-19-6-222-233
The climatic changes taking place in Northern Eurasia, which have become especially aggravated in the past few decades, in combination with the anthropogenic impact on ecosystems, cause noticeable changes in the hydrological characteristics of mineral lakes. Based on the results of daily measurements of brightness temperatures Tb from the SMOS (Soil Moisture and Ocean Solution) satellite, the long-term seasonal dynamics of hydrological changes in some large mineral lakes of Northern Eurasia (Caspian Sea, Kara-Bogaz-Gol Bay, Aral Sea, lakes Sarykamyshskoe, Kulunda, Ubsu-Nur) from 2012 to 2022 was studied. The analysis of the seasonal and interannual dynamics of Tb and thermodynamic temperature of the underlying surface was performed on the basis of the SMOS L1C and MODIS MOD11A1 (Moderate Resolution Imaging Spectroradiometer) products, respectively. Four periods were identified with different behavior of the radiative characteristics of mineral lakes, associated with a decrease in temperature below the freezing point of salt water, the formation and melting of ice cover on the water surface, changes in the area of the water table, and salinity of water. In the northern Caspian Sea, the influence of the phenological phases of ice cover on the change in the microwave radiation of the underlying surface was noted. The features of microwave radiation of the western (deep water) and northern parts of the Aral Sea are studied. The seasonal dynamics of Tb is associated with the processes of formation of ice cover on the water surface. Judging by the changed seasonal dynamics of the Tb, the Sarykamysh Lake was transformed into a year-round ice-free lake. Peculiarities of the seasonal dynamics of Tb for Lake Ubsu-Nur are revealed, which can be associated with rainfall in the winter-spring season, as well as with the early opening of rivers and flooding of the ice cover of the lake with river water.
Keywords: salt lakes of Northern Eurasia, remote sensing, microwave range, radio brightness temperature, SMOS satellite
Full text

References:

  1. Galakhov V. P., Conditions for the formation of surface runoff in the Kulunda lake basin, News of the Altai State University, 2003, No. 3(29), pp. 071–078 (in Russian).
  2. Ginzburg A. I., Kostianoi A. G., Sheremet N. A., Seasonal and interannual variability of the surface temperature in the Caspian Sea, Oceanology, 2004, Vol. 44, No. 5, pp. 605–618.
  3. Ginzburg A. I., Kostianoy A. G., Serykh I. V., Lebedev S. A., Climatic changes in hydrometeorological parameters of the Caspian Sea (1980–2020), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 277–291 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-277-291.
  4. Ginzburg A. I., Kostyanoy A. G., Sheremet N. A., On the dynamics of waters in the Kara-Bogaz-Gol Bay (satellite information), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 265–279 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-265-279.
  5. Karpychev Yu. A., Variations in the sedimentation in Kara Bogaz Gol bay related to sea level fluctuations during the novocaspian time, Oceanology, 2007, Vol. 47, No. 6, pp. 857–864, DOI: 10.1134/S0001437007060100.
  6. Kostyanoy A. G., Lebedev S. A., Lavrova O. Yu., Soloviev D. M., Solov’ev D. M., Satellite monitoring of the waters of Turkmenistan, 9-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (9th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 14–18 Nov. 2011, Moscow, 2011, p. 271 (in Russian), http://conf.rse.geosmis.ru/thesisshow.aspx?page=30&thesis=2898.
  7. Lebedeva (Verba) M. P., Lopukhina O. V., Kalinina N. V., Specificity of the Chemical and Mineralogical Composition of Salts in Solonchak Playas and Lakes of the Kulunda Steppe, Pochvovedenie, 2008, No. 4, pp. 467–480 (in Russian).
  8. Stepanenko V. M., Repina I. A., Ganbat G., Davaa G., Numerical simulation of ice cover of saline lakes, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 129–138, DOI: 10.1134/S0001433819010092.
  9. Anderson M. R., Crane R. G., Barry R. G., Characteristics of arctic ocean ice determined from SMMR data for 1979: Case studies in the seasonal sea ice zone, Advances in Space Research, 1985, Vol. 5, Issue 6, pp. 257–261, https://doi.org/10.1016/0273-1177(85)90329-1.
  10. Gorji T., Sertel E., Tanik A., Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey, Ecological Indicators, 2017, Vol. 74, pp. 384–391, DOI: 10.1016/j.ecolind.2016.11.043.
  11. Guo H., Bao A., Liu T., Jiapaer G., Ndayisaba F., Jiang L., Kurban A., De Maeyer P., Spatial and temporal characteristics of droughts in Central Asia during 1966-2015, Science of the Total Evironment, 2018, Vol. 624, pp. 1523–1538, https://doi.org/10.1016/j.scitotenv.2017.12.120.
  12. Gutierrez A., Castro R., Vieira P., SMOS L1 Processor L1c Data Processing Model, SO-DS-DME-L1OP-0009, 2014, No. 2.14, 80 p., https://earth.esa.int/documents/10174/1854456/SMOS_L1c-Data-Processing-Models.
  13. Kamilli K. A., Ofner J., Krause T., Sattler T., Schmitt-Kopplin P., Eitenberger E., Friedbacher G., Lendl B., Lohninger H., Schöler H. F., Held A., How salt lakes affect atmospheric new particle formation: A case study in Western Australia, Science of the Total Environment, 2016, Vol. 573, pp. 985–995, https://doi.org/10.1016/j.scitotenv.2016.08.058.
  14. Moore J. N., Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, USA, Science of The Total Environment, 2016, Vol. 554–555, pp. 142–154, https://doi.org/10.1016/j.scitotenv.2016.02.161.
  15. Njoku E. G., Kong J. A., Theory for passive microwave remote sensing of near surface soil moisture, J. Geophysical Research, 1977, Vol. 82, pp. 3108–3118, https://doi.org/10.1029/JB082i020p03108.
  16. Olmedo E., Martínez J., Umbert M., Hoareau N., Portabella M., Ballabrera-Poy J., Turiel A., Improving time and space resolution of SMOS salinity maps using multifractal fusion, Remote Sensing of Environment, 2016, Vol. 180, pp. 246–263, https://doi.org/10.1016/j.rse.2016.02.038.
  17. Panciera R., Walker J. P., Kalma J., Kim E., A proposed extension to the soil moisture and ocean salinity level 2 algorithm for mixed forest and moderate vegetation pixels, Remote Sensing of Environment, 2011, Vol. 115, Issue 12, pp. 3343–3354, https://doi.org/10.1016/j.rse.2011.07.017.
  18. Poursanidis D., Chrysoulakis N., Remote Sensing, natural hazards and the contribution of ESA Sentinels missions, Remote Sensing Applications: Society and Environment, 2017, Vol. 6, pp. 25–38, https://doi.org/10.1016/j.rsase.2017.02.001.
  19. Romanov A. N., Khvostov I. V., Sukovatova A. Yu., Seasonal variations of microwave radiation of saline soils in the Kulunda stepped on evidence derived from SMOS, Progress in Electromagnetics Research Symp. — Spring (PIERS), 2017, pp. 3025–3031, DOI: 10.1109/PIERS.2017.8262274.
  20. Roy S. K., Rowlandson T. L., Berg A. A., Champagne C., Adams J. R., Impact of sub-pixel heterogeneity on modelled brightness temperature for an agricultural region, Intern. J. Applied Earth Observation and Geoinformation, 2016, Vol. 45, pp. 212–220, http://dx.doi.org/10.1016/j.jag.2015.10.003.
  21. Rüdiger C., Walker J. P., Kerr Y., Kim E. J., Hacker J. M., Gurney R. J., Barrett D., Marshall J. L., Toward Vicarious Calibration of Microwave Remote-Sensing Satellites in Arid Environments, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, Issue 3, pp. 1749–1760, DOI: 10.1109/TGRS.2013.2254121.
  22. Russell A., Ghalaieny M., Gazdiyeva B., Zhumabayeva S., Kurmanbayeva A., Akhmetov K. K., Mukanov Y., McCann M., Ali M., Tucker A., Vitolo C., Althonayan A., A Spatial Survey of Environmental Indicators for Kazakhstan: An Examination of Current Conditions and Future Needs, Intern. J. Environmental Research, 2018, Vol. 12, Issue 5, pp. 735–748, https://doi.org/10.1007/s41742-018-0134-7.
  23. Sahr K., White D., Kimerling A. J., Geodesic Discrete Global Grid System, Cartography and Geographic Information Science, 2003, Vol. 30, Issue 2, pp. 121–134, https://doi.org/10.1559/152304003100011090.
  24. Shao Y., Wang L., Wang G., Chai X., Gao Z., Zhang T., Gong H., Liu C., Lake Lop Nur evolution analysis based on radar polarimetric decomposition technology, IEEE Geoscience and Remote Sensing Symp., 2014, pp. 2731–2733, DOI: 10.1109/IGARSS.2014.6947040.
  25. Sharkov E. A., Passive Microwave Remote Sensing of the Earth: physical foundations, Berlin; New York; London; Paris; Tokyo: Springer PRAXIS, 2003, 28 p.
  26. Sharma A., Huang H. P., Zavialov P., Khan V., Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model, Pure and Applied Geophysics, 2018, Vol. 175, Issue 1, pp. 465–478, https://doi.org/10.1007/s00024-017-1675-y.
  27. Shen H., Abuduwaili J., Ma L., Remote sensing-based land surface change identification and prediction in the Aral Sea bed, Central Asia, Intern. J. Environmental Science and Technology, 2019, Vol. 16, Issue 4, pp. 2031–2046, https://doi.org/10.1007/s13762-018-1801-0.
  28. Singh A., Behrangi A., Fisher J. B., Reager J. T., On the Desiccation of the South Aral Sea Observed from Spaceborne Missions, Remote Sensing, 2018, Vol. 10, Issue 5, Art. No. 793, https://doi.org/10.3390/rs10050793.
  29. Sun F., Ma R., Hydrologic chencles of Aral Sea: A reveal by the combination of radar altimeter data and optical images, Annals of GIS, 2019, Vol. 25, Issue 3, pp. 247–261, https://doi.org/10.1080/19475683.2019.1626909.
  30. Talone M., Sabia R., Camps A., Vall-llossera M., Gabarró C., Font J., Sea surface salinity retrievals from HUT-2D L-band radiometric measurements, Remote Sensing of Environment, 2010, Vol. 114, Issue 8, pp. 1756–1764, https://doi.org/10.1016/j.rse.2010.03.006.
  31. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Ivanov V. V., Boyarskii D. A., Alexeeva T. A., Komarova N. Yu., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Advances in Space Research, 2015, Vol. 56(8), pp. 1578–1589, https://doi.org/10.1016/j.asr.2015.07.009.
  32. Ulaby F. T., Moor R. K., Fung A. K., Microwave Remote Sensing: Active and Passive, In 3 vol., Addison-Wesley Publ. Company, 1986, 1645 p.
  33. Waiser M. J., Robarts R. D., Saline Inland Waters, In: Encyclopedia of Inland Waters, Elsevier, 2009, Vol. 2, pp. 634–644.
  34. Wang J., Guo N., Ma C., The dynamic variation characteristics of Gahai Lake area based on EOS-MODIS data, IEEE Intern. Geoscience and Remote Sensing Symp., 2012, pp. 768–771, DOI: 10.1109/IGARSS.2012.6351451.
  35. Wigneron J.-P., Schwank M., Baeza E. L., Kerr Y., Novello N., Millan C., Moisy C., Richaume P., Mialon A., Al Bitar A., Cabot F., Lawrence H., Guyon D., Calvet J.-C., Grant J. P., Casal T., de Rosnay P., Saleh K., Mahmoodi A., Delwart S., Mecklenburg S., First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region, Remote Sensing of Environment, 2012, Vol. 124, pp. 26–37, https://doi.org/10.1016/j.rse.2012.04.014.
  36. Yan L., Zheng M., Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010, Geomorphology, 2015, Vol. 246, pp. 68–78, https://doi.org/10.1016/j.geomorph.2015.06.006.
  37. Yin X., Boutin J., Martin N., Spurgeon P., Optimization of L-Band Sea surface emissivity models deduced from SMOS Data, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, Issue 5, pp. 1414–1426, DOI: 10.1109/TGRS.2012.2184547.