ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 50-60

Infrared channel of the Driada spectrometer for greenhouse gases measurement from space

A.Yu. Trokhimovsky 1 , O.I. Korablev 1 , Yu.S. Ivanov 2 , A.S. Patrakeev 1 , A.A. Fedorova 1 , I.A. Dzyuban 1 , V.V. Druzhin 3 , M.A. Poluarshinov 4 , Yu.V. Smirnov 4 
1 Space Research Institute RAS, Moscow, Russia
2 Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Bauman Moscow State Technical University, Moscow, Russia
4 S.P. Korolev Rocket and Space Сorporation “Energia”, Korolev, Russia
Accepted: 01.12.2022
DOI: 10.21046/2070-7401-2022-19-6-50-60
The concept of a high aperture near-infrared cross-dispersion echelle-spectrometer is presented for greenhouse gases remote measurements from space. This task is of a global nature, industrial and household emissions are anthropogenic sources of greenhouse gas emissions. In recent years, average levels of carbon (CO2) and methane (CH4) have continued to increase, reaching levels of 410 ppm and 1877 ppb, respectively, to date. Obtaining objective information about the state of the carbon balance in the atmosphere is possible only with the use of space-based instruments. The instrument Driada consists of three channels. The main one is a high-resolution spectrometer for 1,4–1,67 micron wavelength range and is designed to measure CO2 absorption lines at 1,58 and 1,6 micron, CH4 lines at 1,65 micron and a number of H2O lines. Two additional channels are designed to measure O2 band at 0,76 micron and aerosol characterization. The scientific tasks and key parameters of the main infrared channel are discussed.
Keywords: greenhouse gases, infrared spectrometer, echelle, cross-dispersion
Full text

References:

  1. Korablev O. I., Trokhimovskiy A. Yu., Vinogradov I. I., Fedorova A. A., Ivanov A. Yu., Kalinnikov Yu. K., Titov A. Y., Kalyuzhny A. V., Rodin A. V., Kostrova E. A., Venkstern A. A., Barke V. V., Smirnov Yu. V., Poluarshinov M. A., Roste O. Z., The Rusalka device for measuring the carbon dioxide and methane concentration in the atmosphere from on board the International Space Station, J. Optical Technology, 2011, Vol. 78, No. 5, pp. 44–58 (in Russian), http://www.opticjourn.ru/download/private/0-1105-44.pdf.
  2. Bertaux J.-L., Hauchecorne A., Lefèvre F., Bréon F.-M., Blanot L., Jouglet D., Lafrique P., Akaev P., The use of the 1.27 μm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb, Atmospheric Measurement Techniques, 2020, Vol. 13, pp. 3329–3374, https://doi.org/10.5194/amt-13-3329-2020.
  3. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Le Quéré C., Myneni R. B., Piao S., Thornton P., Carbon and Other Biogeochemical Cycles, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Report, Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.), Cambridge, UK; New York, US: Cambridge Univ. Press, 2013, pp. 465–570, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf.
  4. Crisp D., Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2), Earth Observing Systems XX: Proc. SPIE, San Diego, 2015, Vol. 9607, Art. No. 960702, https://doi.org/10.1117/12.2187291.
  5. de Vries J., Hoogeveen R., Voors R., Kleipool Q., Veefkind P., Aben I., Snel R., van der Valk N., Visse H., Otter G., Technology evolution of the TROPOMI instrument, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., Munich, 2012, pp. 2876–2879, https://doi.org/10.1109/IGARSS.2012.6350726.
  6. Greenhouse Gas Bulletin, World Meteorological Organization, 2021, No. 17, 10 p., https://library.wmo.int/doc_num.php?explnum_id=10904.
  7. Guerlet S., Butz A., Schepers D., Basu S., Hasekamp O. P., Kuze A., Yokota T., Blavier J.-F., Deutscher N. M., Griffith D. W.T., Hase F., Kyro E., Morino I., Sherlock V., Sussmann R., Galli A., Aben I., Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements, J. Geophysical Research: Atmospheres, 2013, Vol. 118, pp. 4887–4905, https://doi.org/10.1002/jgrd.50332.
  8. Kasuya M., Nakajima M., Hamazaki T., Greenhouse Gases Observing Satellite (GOSAT) Program Overview and Its Development Status, Trans. Japan Society for Aeronautical and Space Sciences, Space Technology, Japan, 2009, Vol. 7, No. ists26, pp. To_4_5–To_4_10, available at: https://www.jstage.jst.go.jp/article/tstj/7/ists26/7_ists26_To_4_5/_pdf.
  9. Korablev O. I., Bertaux J.-L., Vinogradov I. I., Compact high-resolution IR spectrometer for atmospheric studies, Infrared Spaceborne Remote Sensing X: Proc. SPIE, Seattle, 2002, Vol. 4818, pp. 272–281, https://doi.org/10.1117/12.451993.
  10. Korablev O. I., Bertaux J.-L., Vinogradov I. I., Kalinnikov Y. K., Nevejans D., Neefs E., Le Barbu T., Durry G., Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements, Intern. Conf. Space Optics ICSO 2004: Proc. SPIE, Toulouse, 2004, Vol. 10568, Art. No. 105680A, pp. 73–80, https://doi.org/10.1117/12.2308000.
  11. Korablev O., Montmessin F., Trokhimovskiy A., Fedorova A. A., Shakun A. V., Grigoriev A. V., Moshkin B. E., Ignatiev N. I., Forget F., Lefèvre F., Anufreychik K., Dzuban I., Ivanov Y. S., Kalinnikov Y. K., Kozlova T. O., Kungurov A., Makarov V., Martynovich F., Maslov I., Merzlyakov D., Moiseev P. P., Nikolskiy Y., Patrakeev A., Patsaev D., Santos-Skripko A., Sazonov O., Semena N., Semenov A., Shashkin V., Sidorov A., Stepanov A. V., Stupin I., Timonin D., Titov A. Y., Viktorov A., Zharkov A., Altieri F., Arnold G., Belyaev D. A., Bertaux J. L., Betsis D. S., Duxbury N., Encrenaz T., Fouchet T., Gérard J.-C., Grassi D., Guerlet S., Hartogh P., Kasaba Y., Khatuntsev I., Krasnopolsky V. A., Kuzmin R. O., Lellouch E., Lopez-Valverde M. A., Luginin M., Määttänen A., Marcq E., Martin Torres J., Medvedev A. S., Millour E., Olsen K. S., Patel M. R., Quantin-Nataf C., Rodin A. V., Shematovich V. I., Berkenboschs I., Thomas N., Vazquez L., Vincendon M., Wilquet V., Wilson C. F., Zasova L. V., Zelenyi L. M., Zorzano M. P., The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter, Space Science Reviews, 2018, Vol. 214, No. 7, https://doi.org/10.1007/s11214-017-0437-6.
  12. Kuang Z., Margolis J., Toon G., Crisp D., Yung Y., Spaceborne measurements of atmospheric CO2 by high‐resolution NIR spectrometry of reflected sunlight: An introductory study, Geophysical Research Letters, 2002, Vol. 29, No. 15, pp. 11-1–11-4, https://doi.org/10.1029/2001GL014298.
  13. Nevejans D., Neefs E., Van Ransbeeck E., Berkenbosch S., Clairquin R., De Vos L., Moelans W., Glorieux S., Baeke A., Korablev O., Vinogradov I., Kalinnikov Y., Bach B., Dubois J.-P., Villard E., Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 micrometer, Applied Optics, 2006, Vol. 5, Issue 21, pp. 5191–5206, https://doi.org/10.1364/AO.45.005191.
  14. Stanley K. M., Grant A., O’Doherty S., Young D., Manning A. J., Stavert A. R., Spain T. G., Salameh P. K., Harth C. M., Simmonds P. G., Sturges W. T., Oram D. E., Derwent R. G., Greenhouse gas measurements from a UK network of tall towers: technical description and first results, Atmospheric Measurement Techniques, 2018, Vol. 11, pp. 1437–1458, DOI: 10.5194/amt-11-1437-2018.
  15. State of the Global Climate 2020: Provisional Report, World Meteorological Organization, 2020, 38 p., https://library.wmo.int/doc_num.php?explnum_id=10444.
  16. Taylor T. E., O’Dell C. W., O’Brien D. M., Kikuchi N., Yokota T., Nakajima T. Y., Ishida H., Crisp D., Nakajima T., Comparison of Cloud-Screening Methods Applied to GOSAT Near-Infrared Spectra, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 1, pp. 295–309, https://doi.org/10.1109/TGRS.2011.2160270.
  17. The NOAA Annual Greenhouse Gas Index (AGGI), Montzka S. A. (ed.), NOAA Global Monitoring Laboratory, 2022, https://gml.noaa.gov/aggi/aggi.html.
  18. Trokhimovskiy A., Korablev O., Ivanov Y. S., Siniyavsky I. I., Fedorova A., Stepanov A. V., Titov A. Y., Moiseev P. P., Kozlova T. O., Montmessin F., Middle-infrared echelle cross-dispersion spectrometer ACS-MIR for the ExoMars Trace Gas Orbiter, Infrared Remote Sensing and Instrumentation XXIII: Proc. SPIE, San Diego, 2015, Vol. 9608, Art. No. 960808, https://doi.org/10.1117/12.2190359.
  19. Uchino O., Kikuchi N., Sakai T., Morino I., Yoshida Y., Nagai T., Shimizu A., Shibata T., Yamazaki A., Uchiyama A., Kikuchi N., Oshchepkov S., Bril A., Yokota T., Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 3393–3404, https://doi.org/10.5194/acp-12-3393-2012.
  20. Wang Q., Yang Z.-D., Bi Y.-M., Spectral parameters and signal-to-noise ratio requirement for TANSAT hyper spectral remote sensor of atmospheric CO2, Remote Sensing of the Atmosphere, Clouds, and Precipitation: Proc. SPIE, Beijing, 2014, Vol. 9259, Art. No. 92591T, https://doi.org/10.1117/12.2067572.
  21. Wendisch M., Pilewskie P., Jäkel E., Schmidt S., Pommier J., Howard S., Jonsson H. H., Guan H., Schröder M., Mayer B., Airborne measurements of areal spectral surface albedo over different sea and land surfaces, J. Geophysical Research: Atmospheres, 2004, Vol. 109, Art. No. D08203, https://doi.org/10.1029/2003JD004392.